

1

2

3

TABLE OF CONTENTS ... 3

1 PROJECT CONFIGURATION .. 11

1.1 Creating a New Project... 11

1.2 launchSettings.json File Configuration ... 13

1.3 Program.cs and Startup.cs Explanations .. 14

1.4 Extension Methods and CORS Configuration ... 16

1.5 IIS Configuration ... 17

1.6 Additional Code in the Startup Class .. 19

1.7 Environment-Based Settings .. 20

2 CONFIGURING A LOGGING SERVICE 23

2.1 Creating the Required Projects .. 23

2.2 Creating the ILoggerManager Interface and Installing NLog 24

2.3 Implementing the Interface and Nlog.Config File 26

2.4 Configuring Logger Service for Logging Messages 27

2.5 DI, IoC, and Logger Service Testing ... 29

3 DATABASE MODEL AND REPOSITORY PATTERN 31

3.1 Creating Models ... 31

3.2 Context Class and the Database Connection ... 33

3.3 Migration and Initial Data Seed .. 35

4

3.4 Repository Pattern Logic .. 38

3.5 Repository User Interfaces and Classes ... 40

3.6 Creating a Repository Manager .. 42

4 HANDLING GET REQUESTS ... 46

4.1 Controllers and Routing in WEB API ... 46

4.2 Naming Our Resources ... 48

4.3 Getting All Companies From the Database ... 49

4.4 Testing the Result with Postman .. 52

4.5 DTO Classes vs. Entity Model Classes ... 54

4.6 Using AutoMapper in ASP.NET Core .. 57

5 GLOBAL ERROR HANDLING .. 60

5.1 Handling Errors Globally with the Built-In Middleware........................... 60

5.2 Startup Class Modification .. 61

5.3 Testing the Result .. 62

6 GETTING ADDITIONAL RESOURCES 64

6.1 Getting a Single Resource From the Database .. 64

6.2 Parent/Child Relationships in Web API .. 66

6.3 Getting a Single Employee for Company ... 69

7 CONTENT NEGOTIATION .. 72

7.1 What Do We Get Out of the Box? .. 72

7.2 Changing the Default Configuration of Our Project 73

5

7.3 Testing Content Negotiation ... 74

7.4 Restricting Media Types ... 74

7.5 More About Formatters .. 75

7.6 Implementing a Custom Formatter .. 76

8 METHOD SAFETY AND METHOD IDEMPOTENCY 79

9 CREATING RESOURCES .. 81

9.1 Handling POST Requests .. 81

9.2 Code Explanation ... 83

9.3 Creating a Child Resource .. 85

9.4 Creating Children Resources Together with a Parent 88

9.5 Creating a Collection of Resources ... 90

9.6 Model Binding in API .. 93

10 WORKING WITH DELETE REQUESTS 97

10.1 Deleting a Parent Resource with its Children ... 98

11 WORKING WITH PUT REQUESTS 101

11.1 Updating Employee .. 101

11.1.1 About the Update Method from the RepositoryBase Class104

11.2 Inserting Resources while Updating One ... 105

12 WORKING WITH PATCH REQUESTS 107

12.1 Applying PATCH to the Employee Entity ... 108

6

13 VALIDATION ... 114

13.1 Validation while Creating Resource .. 115

13.1.1 Validating Int Type ..119

13.2 Validation for PUT Requests ... 121

13.3 Validation for PATCH Requests ... 123

14 ASYNCHRONOUS CODE .. 127

14.1 What is Asynchronous Programming? .. 127

14.2 Async, Await Keywords, and Return Types ... 128

14.2.1 The IRepositoryBase Interface and the RepositoryBase Class Explanation .130

14.3 Modifying the ICompanyRepository Interface and the

CompanyRepository Class .. 130

14.4 IRepositoryManager and RepositoryManager Changes......................... 131

14.5 Controller Modification ... 132

15 ACTION FILTERS ... 136

15.1 Action Filters Implementation .. 136

15.2 The Scope of Action Filters ... 137

15.3 Order of Invocation .. 138

15.4 Improving the Code with Action Filters .. 140

15.5 Validation with Action Filters ... 140

15.6 Dependency Injection in Action Filters ... 144

16 PAGING ... 150

16.1 What is Paging? ... 150

7

16.2 Paging Implementation .. 151

16.3 Concrete Query .. 153

16.4 Improving the Solution .. 156

16.4.1 Additional Advice ...159

17 FILTERING .. 160

17.1 What is Filtering? ... 160

17.2 How is Filtering Different from Searching? ... 161

17.3 How to Implement Filtering in ASP.NET Core Web API 162

17.4 Sending and Testing a Query .. 164

18 SEARCHING ... 167

18.1 What is Searching?... 167

18.2 Implementing Searching in Our Application ... 167

18.3 Testing Our Implementation .. 169

19 SORTING ... 172

19.1 What is Sorting? ... 172

19.2 How to Implement Sorting in ASP.NET Core Web API 174

19.3 Implementation – Step by Step .. 176

19.4 Testing Our Implementation .. 178

19.5 Improving the Sorting Functionality... 179

20 DATA SHAPING ... 182

20.1 What is Data Shaping? ... 182

8

20.2 How to Implement Data Shaping ... 183

20.3 Step-by-Step Implementation .. 185

20.4 Resolving XML Serialization Problems .. 189

21 SUPPORTING HATEOAS ... 192

21.1 What is HATEOAS and Why is it so Important?..................................... 192

21.1.1 Typical Response with HATEOAS Implemented193

21.1.2 What is a Link? ..193

21.1.3 Pros/Cons of Implementing HATEOAS ..194

21.2 Adding Links in the Project .. 194

21.3 Additional Project Changes .. 197

21.4 Adding Custom Media Types ... 198

21.4.1 Registering Custom Media Types ...199

21.4.2 Implementing a Media Type Validation Filter ...200

21.5 Implementing HATEOAS ... 201

22 WORKING WITH OPTIONS AND HEAD REQUESTS 207

22.1 OPTIONS HTTP Request ... 207

22.2 OPTIONS Implementation .. 207

22.3 Head HTTP Request .. 209

22.4 HEAD Implementation .. 209

23 ROOT DOCUMENT .. 211

23.1 Root Document Implementation .. 211

24 VERSIONING APIS .. 216

9

24.1 Required Package Installation and Configuration................................. 216

24.2 Versioning Examples .. 218

24.2.1 Using Query String ..219

24.2.2 Using URL Versioning ...220

24.2.3 HTTP Header Versioning ...221

24.2.4 Deprecating Versions ...222

24.2.5 Using Conventions ...223

25 CACHING ... 224

25.1 About Caching .. 224

25.1.1 Cache Types ...224

25.1.2 Response Cache Attribute ...225

25.2 Adding Cache Headers.. 225

25.3 Adding Cache-Store .. 227

25.4 Expiration Model .. 229

25.5 Validation Model... 231

25.6 Supporting Validation... 233

25.6.1 Configuration ..234

25.7 Using ETag and Validation .. 236

26 RATE LIMITING AND THROTTLING 240

26.1 Implementing Rate Limiting ... 240

27 JWT AND IDENTITY ... 244

27.1 Implementing Identity in ASP.NET Core Project................................... 244

27.2 Creating Tables and Inserting Roles ... 246

27.3 User Creation ... 248

10

27.4 Big Picture ... 251

27.5 About JWT .. 252

27.6 JWT Configuration .. 254

27.7 Protecting Endpoints .. 256

27.8 Implementing Authentication .. 257

27.9 Role-Based Authorization ... 263

28 DOCUMENTING API WITH SWAGGER 266

28.1 About Swagger ... 266

28.2 Swagger Integration Into Our Project .. 267

28.3 Adding Authorization Support .. 271

28.4 Extending Swagger Configuration .. 274

29 DEPLOYMENT TO IIS ... 278

29.1 Creating Publish Files ... 278

29.2 Windows Server Hosting Bundle .. 280

29.3 Installing IIS.. 280

29.4 Configuring Environment File ... 283

29.5 Testing Deployed Application ... 285

11

Configuration in .NET Core is very different from what we’re used to in

.NET Framework projects. We don’t use the web.config file anymore, but

instead, use a built-in Configuration framework that comes out-of-the-box

in .NET Core.

To be able to develop good applications, we need to understand how to

configure our application and its services first.

In this section, we’ll learn about configuration methods in the Startup

class and set up our application. We will also learn how to register

different services and how to use extension methods to achieve this.

Of course, the first thing we need to do is to create a new project, so,

let’s dive right into it.

Let's open Visual Studio and create a new ASP.NET Core Web Application:

12

Now let’s choose a name and location for our project:

Next, we want to choose a .NET Core and ASP.NET Core 5.0 from the

dropdown lists respectively. Also, we don’t want to enable OpenAPI

support right now. We’ll do that later in the book on our own. Now we can

proceed by clicking the Create button and the project will start initializing:

13

1.2

After the project has been created, we are going to modify the

launchSettings.json file, which can be found in the Properties section of

the Solution Explorer window.

This configuration determines the launch behavior of the ASP.NET Core

applications. As we can see, it contains both configurations to launch

settings for IIS and self-hosted applications (Kestrel).

For now, let’s change the launchBrowser property to false to prevent

the web browser from launching on application start.

{
{
 "$schema": "http://json.schemastore.org/launchsettings.json",
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:58753",
 "sslPort": 44370
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": false,
 "launchUrl": "weatherforecast"
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "CompanyEmployees": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": false,
 "launchUrl": "weatherforecast",
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

14

This is convenient since we are developing a Web API project and we

don’t need a browser to check our API out. We will use Postman

(described later) for this purpose.

If you’ve checked Configure for HTTPS checkbox earlier in the setup

phase, you will end up with two URLs in the applicationUrl section — one

for HTTP, and one for HTTPS.

You’ll also notice the sslPort property which indicates that our

application, when running in IISExpress, will be configured for HTTPS

(port 44370), too.

Additional info: Take note that this HTTPS configuration is only valid in

the local environment. You will have to configure a valid certificate and

HTTPS redirection once you deploy the application.

There is one more useful property for developing applications locally and

that’s the launchUrl property. This property determines which URL will

the application navigate to initially. For launchUrl property to work, we

need to set the launchBrowser property to true. So, for example, if we

set the launchUrl property to weatherforecast, we will be redirected

to https://localhost:5001/weatherforecast when we launch our

application.

Program.cs is the entry point to our application and it looks like this:

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>

15

 {
 webBuilder.UseStartup<Startup>();
 });
}

If you are familiar with how things work in .NET Core 1.0, you will find

this code considerably smaller than it used to be.

You might wonder why some parts are missing like the UseKestrel() or

the UseIISIntegration(). The CreateDefaultBuilder(args)

method encapsulates all that stuff and makes this code more readable,

but it keeps all the magic present. You can still fine grain the

configuration if you want to.

The CreateDefaultBuilder(args) method sets the default files and

variables for the project and logger configuration. The fact that the logger

is configured earlier in the bootstrapping process means we can log issues

that happen during bootstrapping as well, which was a bit harder in

previous versions.

After that, we can call webBuilder.UseStartup<Startup>() to

initialize the Startup class too. The Startup class is mandatory in

ASP.NET Core Web API projects. In the Startup class, we configure the

embedded or custom services that our application needs.

When we open the Startup class, we can find the constructor and the two

methods which we’ll extend quite a few times during our application

development.

As the method name indicates, the ConfigureServices method is used

to do exactly that: configure our services. A service is a reusable part of

the code that adds some functionality to our application.

In the Configure method, we are going to add different middleware

components to the application’s request pipeline.

16

Since larger applications could potentially contain a lot of different

services, we can end up with a lot of clutter and unreadable code in the

ConfigureServices method. To make it more readable for the next

person and ourselves, we can structure the code into logical blocks and

separate those blocks into extension methods.

An extension method is inherently a static method. What makes it

different from other static methods is that it accepts this as the first

parameter, and this represents the data type of the object which will be

using that extension method. We’ll see what that means in a moment.

An extension method must be defined inside a static class. This kind of

method extends the behavior of a type in .NET. Once we define an

extension method, it can be chained multiple times on the same type of

object.

So, let’s start writing some code to see how it all adds up.

We are going to create a new folder Extensions in the project and create

a new class inside that folder named ServiceExtensions. The

ServiceExtensions class should be static.

public static class ServiceExtensions
{
}

Let’s start by implementing something we need for our project

immediately so we can see how extensions work.

The first thing we are going to do is to configure CORS in our application.

CORS (Cross-Origin Resource Sharing) is a mechanism to give or restrict

access rights to applications from different domains.

17

If we want to send requests from a different domain to our application,

configuring CORS is mandatory. So, to start off, we’ll add a code that

allows all requests from all origins to be sent to our API:

public static void ConfigureCors(this IServiceCollection services) =>
 services.AddCors(options =>
 {
 options.AddPolicy("CorsPolicy", builder =>
 builder.AllowAnyOrigin()
 .AllowAnyMethod()
 .AllowAnyHeader());
 });

We are using basic CORS policy settings because allowing any origin,

method, and header is okay for now. But we should be more

restrictive with those settings in the production environment. More

precisely, as restrictive as possible.

Instead of the AllowAnyOrigin() method which allows requests from any

source, we can use the WithOrigins("https://example.com") which will

allow requests only from that concrete source. Also, instead of

AllowAnyMethod() that allows all HTTP methods, we can use

WithMethods("POST", "GET") that will allow only specific HTTP methods.

Furthermore, you can make the same changes for the AllowAnyHeader()

method by using, for example, the WithHeaders("accept", "content-

type") method to allow only specific headers.

ASP.NET Core applications are by default self-hosted, and if we want to

host our application on IIS, we need to configure an IIS integration which

will eventually help us with the deployment to IIS. To do that, we need to

add the following code to the ServiceExtensions class:

public static void ConfigureIISIntegration(this IServiceCollection services) =>
 services.Configure<IISOptions>(options =>
 {

18

 });

We do not initialize any of the properties inside the options because we

are fine with the default values for now. But if you need to fine-tune the

configuration right away, you might want to take a look at the possible

options:

Now, we mentioned extension methods are great for organizing your code

and extending functionalities. Let’s go back to our Startup class and

modify the ConfigureServices and the Configure methods to support

CORS and IIS integration now that we’ve written extension methods for

those functionalities:

public void ConfigureServices(IServiceCollection services)
{
 services.ConfigureCors();
 services.ConfigureIISIntegration();

 services.AddControllers();
}

And let's add a few mandatory methods to our Configure method:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

19

 else
 {
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseCors("CorsPolicy");

 app.UseForwardedHeaders(new ForwardedHeadersOptions
 {
 ForwardedHeaders = ForwardedHeaders.All
 });

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });

}

We’ve added CORS and IIS configuration to the ConfigureServices

method. Furthermore, CORS configuration has been added to the

application’s pipeline inside the Configuration method. But as you can

see, there are some additional methods unrelated to IIS configuration.

Let’s go through those and learn what they do.

 app.UseForwardedHeaders() will forward proxy headers to the

current request. This will help us during application deployment.

 app.UseStaticFiles() enables using static files for the request. If

we don’t set a path to the static files directory, it will use a wwwroot

folder in our project by default.

 app.UseHsts() will add middleware for using HSTS, which adds the

Strict-Transport-Security header.

Configuration from .NET Core 3.1 (and in 5.0) is a bit different than it was

in 2.2, so we have to make some changes in the Startup class. First, in

the ConfigureServices method, instead of AddMvc() as used in 2.2,

now we have AddControllers(). This method registers only the

20

controllers in IServiceCollection and not Views or Pages because they

are not required in the Web API project which we are building.

In the Configure method, we have UseRouting() and

UseAuthorization() methods. They add routing and authorization

features to our application, respectively.

Finally, we have the UseEndpoints() method with the

MapControllers() method, which adds an endpoint for the controller’s

action to the routing without specifying any routes.

Microsoft advises that the order of adding different middlewares to the

application builder is very important. So the UseRouting() method

should be called before the UseAuthorization() method and

UseCors() or UseStaticFiles() have to be called before the

UseRouting() method.

While we develop our application, we use the “development”

environment. But as soon as we publish our application, it goes to the

“production” environment. Development and production environments

should have different URLs, ports, connection strings, passwords, and

other sensitive information.

Therefore, we need to have a separate configuration for each

environment and that’s easy to accomplish by using .NET Core-provided

mechanisms.

As soon as we create a project, we are going to see the

appsettings.json file in the root, which is our main settings file, and

when we expand it we are going to see the

appsetings.Development.json file by default. These files are separate

21

on the file system, but Visual Studio makes it obvious that they are

connected somehow.

The apsettings.{EnvironmentSuffix}.json files are used to override the

main appsettings.json file. When we use a key-value pair from the

original file, we override it. We can also define environment-specific

values too.

For the production environment, we should add another

file: appsettings.Production.json:

The appsettings.Production.json file should contain the

configuration for the production environment.

To set which environment our application runs on, we need to set up the

ASPNETCORE_ENVIRONMENT environment variable. For example, to run

the application in production, we need to set it to the Production value on

the machine we do the deployment to.

We can set the variable through the command prompt by typing set

ASPNETCORE_ENVIRONMENT=Production in Windows or export

ASPNET_CORE_ENVIRONMENT=Production in Linux.

ASP.NET Core applications use the value of that environment variable to

decide which appsettings file to use accordingly. In this case, that will be

appsettings.Production.json.

If we take a look at our launchSettings.json file, we are going to see

that this variable is currently set to Development.

22

In the next chapter, we’ll learn how to configure a Logger service because

it’s really important to have it configured as early in the project as

possible.

23

Why does logging messages matter so much during application

development? While our application is in the development stage, it's easy

to debug the code and find out what happened. But debugging in a

production environment is not that easy.

That's why log messages are a great way to find out what went wrong

and why and where the exceptions have been thrown in our code in the

production environment. Logging also helps us more easily follow the flow

of our application when we don’t have access to the debugger.

.NET Core has its own implementation of the logging mechanism, but in

all our projects we prefer to create our custom logger service with the

external logger library NLog.

That is exactly what we are going to do in this chapter.

Let’s create two new projects. In the first one named Contracts, we are

going to keep our interfaces. We will use this project later on too, to

define our contracts for the whole application. The second one,

LoggerService, we are going to use to write our logger logic in.

To create a new project, right-click on the solution window, choose Add

and then NewProject. Choose the Class Library (.NET Core) project:

24

Finally, name it Contracts. Do the same thing for the second project and

name it LoggerService. Now that we have these projects in place, we

need to reference them from our main project.

To do that, navigate to the solution explorer. Then in the LoggerService

project, right-click on Dependencies and choose the AddReference

option. Under Projects, click Solution and check the Contracts project.

Now, in the main project right click on Dependencies and then click on

Add Reference. Check the LoggerService checkbox to import it. Since

we have referenced the Contracts project through the LoggerService,

it will be available in the main project too.

Our logger service will contain four methods for logging our messages:

 Info messages

 Debug messages

 Warning messages

 Error messages

To achieve this, we are going to create an interface

named ILoggerManager inside the Contracts project containing those

four method definitions.

25

So, let’s do that first:

public interface ILoggerManager
{
 void LogInfo(string message);
 void LogWarn(string message);
 void LogDebug(string message);
 void LogError(string message);
}

Before we implement this interface inside the LoggerService project, we

need to install the NLog library in our LoggerService project. NLog is a

logging platform for .NET which will help us create and log our messages.

We are going to show two different ways of adding the NLog library to our

project.

1. In the LoggerService project, right-click on the Dependencies and

choose Manage NuGet Packages. After the NuGet Package Manager

window appears, just follow these steps:

2. From the View menu, choose Other Windows and then click on the
Package Manager Console. After the console appears, type:
Install-Package NLog.Extensions.Logging -Version 1.6.5

After a couple of seconds, NLog is up and running in our application.

26

In the LoggerService project, we are going to create a new

class: LoggerManager. Now let’s have it implement the ILoggerManager

interface we previously defined:

public class LoggerManager : ILoggerManager
{
 private static ILogger logger = LogManager.GetCurrentClassLogger();

 public LoggerManager()
 {
 }

 public void LogDebug(string message)
 {
 logger.Debug(message);
 }

 public void LogError(string message)
 {
 logger.Error(message);
 }

 public void LogInfo(string message)
 {
 logger.Info(message);
 }

 public void LogWarn(string message)
 {
 logger.Warn(message);
 }
}

As you can see, our methods are just wrappers around NLog’s methods.

Both ILogger and LogManager are part of the NLog namespace. Now,

we need to configure it and inject it into the Startup class in

the ConfigureServices method.

NLog needs to have information about where to put log files on the file

system, what the name of these files will be, and what is the minimum

level of logging that we want.

27

We are going to define all these constants in a text file in the main project

and name it nlog.config. You'll need to change the path of

the internal log and filename parameters to your own paths.

<?xml version="1.0" encoding="utf-8" ?>
<nlog xmlns="http://www.nlog-project.org/schemas/NLog.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 autoReload="true"
 internalLogLevel="Trace"

internalLogFile="d:\Projects\CompanyEmployees\Project\internal_logs\internallog.txt">

 <targets>
 <target name="logfile" xsi:type="File"

fileName="d:\Projects\CompanyEmployees/Project\logs\${shortdate}_logfile.txt"
 layout="${longdate} ${level:uppercase=true} ${message}"/>
 </targets>

 <rules>
 <logger name="*" minlevel="Debug" writeTo="logfile" />
 </rules>
</nlog>

Setting up the configuration for a logger service is quite easy. First, we

need to update the constructor of the Startup class:

public Startup(IConfiguration configuration)
{
 LogManager.LoadConfiguration(string.Concat(Directory.GetCurrentDirectory(),
"/nlog.config"));
 Configuration = configuration;
}

Basically, we are using NLog’s LogManager static class with the

LoadConfiguration method to provide a path to the configuration file.

The next thing we need to do is to add the logger service inside the .NET

Core’s IOC container. There are three ways to do that:

 By calling the services.AddSingleton method, we can create a

service the first time we request it and then every subsequent

request will call the same instance of the service. This means that all

28

components share the same service every time they need it and the

same instance will be used for every method call.

 By calling the services.AddScoped method, we can create

a service once per request. That means whenever we send an HTTP

request to the application, a new instance of the service will be

created.

 By calling the services.AddTransient method, we can create a

service each time the application requests it. This means that if

multiple components need the service, it will be created again for

every single component request.

So, let’s add a new method in the ServiceExtensions class:

public static void ConfigureLoggerService(this IServiceCollection services) =>
 services.AddScoped<ILoggerManager, LoggerManager>();

And after that, we need to modify the ConfigureServices method to

include our newly created extension method:

public void ConfigureServices(IServiceCollection services)
{
 services.ConfigureCors();
 services.ConfigureIISIntegration();
 services.ConfigureLoggerService();

 services.AddControllers();
}

Every time we want to use a logger service, all we need to do is to inject

it into the constructor of the class that needs it. .NET Core will resolve

that service and the logging features will be available.

This type of injecting a class is called Dependency Injection and it is built

into .NET Core.

Let’s learn a bit more about it.

29

What is Dependency Injection (DI) exactly and what is IoC (Inversion of

Control)?

Dependency injection is a technique we use to achieve the decoupling of

objects and their dependencies. It means that rather than instantiating an

object explicitly in a class every time we need it, we can instantiate it

once and then send it to the class.

This is often done through a constructor. The specific approach we

utilize is also known as the Constructor Injection.

In a system that is designed around DI, you may find many classes

requesting their dependencies via their constructors. In this case, it is

helpful to have a class that manages and provides dependencies to

classes through the constructor.

These classes are referred to as containers or more specifically, Inversion

of Control containers. An IoC container is essentially a factory that is

responsible for providing instances of the types that are requested from

it.

To test our logger service, we are going to use the default

WeatherForecastController. You can find it in the main project in the

Controllers folder. It comes with the ASP.NET Core Web API template.

In the Solution Explorer, we are going to open the Controllers folder and

locate the WeatherForecastController class. Let’s modify it:

[Route("[controller]")]
[ApiController]
public class WeatherForecastController : ControllerBase
{
 private ILoggerManager _logger;

 public WeatherForecastController(ILoggerManager logger)
 {
 _logger = logger;
 }

30

 [HttpGet]
 public IEnumerable<string> Get()
 {
 _logger.LogInfo("Here is info message from our values controller.");
 _logger.LogDebug("Here is debug message from our values controller.");
 _logger.LogWarn("Here is warn message from our values controller.");
 _logger.LogError("Here is an error message from our values controller.");

 return new string[] { "value1", "value2" };
 }
}

Now let’s start the application and browse to

https://localhost:5001/weatherforecast.

Tip: If you are using Windows 8 and having trouble starting this

application on https://localhost:5001..., you have to add a

parameter to the appsetings.Development.json file:

"Kestrel": {
 "EndpointDefaults": {
 "Protocols": "Http1"
 }
 }

As a result, you will see an array of two strings. Now go to the folder that

you have specified in the nlog.config file, and check out the result. You

should see two folders: the internal_logs folder and the logs folder.

Inside the logs folder, you should find a file with the following logs:

That’s all we need to do to configure our logger for now. We’ll add some

messages to our code along with the new features.

31

In this chapter, we are going to create a database model and transfer it to

the MSSQL database by using the code first approach. So, we are going to

learn how to create entities (model classes), how to work with the

DbContext class, and how to use migrations to transfer our created

database model to the real database. Of course, it is not enough to just

create a database model and transfer it to the database. We need to use

it as well, and for that, we will create a Repository pattern as a data

access layer.

With the Repository pattern, we create an abstraction layer between the

data access and the business logic layer of an application. By using it, we

are promoting a more loosely coupled approach to access our data in the

database.

Also, our code becomes cleaner, easier to maintain, and reusable. Data

access logic is stored in a separate class, or sets of classes called a

repository, with the responsibility of persisting the application’s business

model.

So, let’s start with the model classes first.

Using the example from the second chapter of this book, we are going to

extract a new Class Library (.NET Core) project named Entities.

Don’t forget to add the reference from the main project to the Entities

project.

Inside it, we are going to create a folder named Models, which will

contain all the model classes (entities). Entities represent classes that

Entity Framework Core uses to map our database model with the tables

32

from the database. The properties from entity classes will be mapped to

the database columns.

So, in the Models folder we are going to create two classes and modify

them:

public class Company
{
 [Column("CompanyId")]
 public Guid Id { get; set; }

 [Required(ErrorMessage = "Company name is a required field.")]
 [MaxLength(60, ErrorMessage = "Maximum length for the Name is 60 characters.")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Company address is a required field.")]
 [MaxLength(60, ErrorMessage = "Maximum length for the Address is 60 characters")]
 public string Address { get; set; }

 public string Country { get; set; }

 public ICollection<Employee> Employees { get; set; }
}

public class Employee
{
 [Column("EmployeeId")]
 public Guid Id { get; set; }

 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Age is a required field.")]
 public int Age { get; set; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
 public string Position { get; set; }

 [ForeignKey(nameof(Company))]
 public Guid CompanyId { get; set; }
 public Company Company { get; set; }
}

We have created two classes: the Company and Employee. Those classes

contain the properties which Entity Framework Core is going to map to

the columns in our tables in the database. But not all the properties will

be mapped as columns. The last property of the Company class

(Employees) and the last property of the Employee class (Company) are

33

navigational properties; these properties serve the purpose of defining the

relationship between our models.

We can see several attributes in our entities. The [Column] attribute will

specify that the Id property is going to be mapped with a different name

in the database. The [Required] and [MaxLength] properties are here

for validation purposes. The first one declares the property as mandatory

and the second one defines its maximum length.

Once we transfer our database model to the real database, we are going

to see how all these validation attributes and navigational properties

affect the column definitions.

Now, let's create the context class, which will be a middleware component

for communication with the database. It must inherit from the Entity

Framework Core’s DbContext class and it consists of DbSet properties,

which EF Core is going to use for the communication with the database.

Because we are working with the DBContext class, we need to install the

Microsoft.EntityFrameworkCore package in the Entities project.

So, let’s navigate to the root of the Entities project and create the

RepositoryContext class:

public class RepositoryContext : DbContext
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

 public DbSet<Company> Companies { get; set; }
 public DbSet<Employee> Employees { get; set; }
}

After the class modification, let’s open the appsettings.json file and

add the connection string named sqlconnection:

34

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "ConnectionStrings": {
 "sqlConnection": "server=.; database=CompanyEmployee; Integrated Security=true"
 },
 "AllowedHosts": "*"
}

It is quite important to have the JSON object with the

ConnectionStrings name in our appsettings.json file, and soon you

will see why.

We have one more step to finish the database model configuration. We

need to register the RepositoryContext class in the application’s

dependency injection container as we did with the LoggerManager class

in the previous chapter.

So, let’s open the ServiceExtensions class and add the additional

method:

public static void ConfigureSqlContext(this IServiceCollection services,
 IConfiguration configuration) =>
 services.AddDbContext<RepositoryContext>(opts =>
 opts.UseSqlServer(configuration.GetConnectionString("sqlConnection")));

With the help of the IConfiguration configuration parameter, we

can use the GetConnectionString method to access the connection

string from the appsettings.json file. Moreover, to be able to use the

UseSqlServer method, we need to install the

Microsoft.EntityFrameworkCore.SqlServer package. If we navigate

to the GetConnectionString method definition, we will see that it is an

extension method that uses the ConnectionStrings name from the

appsettings.json file to fetch the connection string by the provided

key:

35

Afterward, in the Startup class in the ConfigureServices method, we

are going to add the context service to the IOC right above the

services.AddControllers() line:

services.ConfigureSqlContext(Configuration);

Migration is a standard process of creating and updating the database

from our application. Since we are finished with the database model

creation, we can transfer that model to the real database. But we need to

modify our ConfigureSqlContext method first:

public static void ConfigureSqlContext(this IServiceCollection services,
IConfiguration configuration) =>
 services.AddDbContext<RepositoryContext>(opts =>
 opts.UseSqlServer(configuration.GetConnectionString("sqlConnection"), b =>

b.MigrationsAssembly("CompanyEmployees")));

We have to make this change because migration assembly is not in our

main project, but in the Entities project. So, we just change the project

for the migration assembly.

Before we execute our migration commands, we have to install an

additional ef core library: Microsoft.EntityFrameworkCore.Tools

Now, let’s open the Package Manager Console window and create our first

migration: PM> Add-Migration DatabaseCreation

With this command, we are creating migration files and we can find them

in the Migrations folder in our main project:

36

With those files in place, we can apply migration: PM> Update-Database

Excellent. We can inspect our database now:

Once we have the database and tables created, we should populate them

with some initial data. To do that, we are going to create another folder

called Configuration in the Entities project and add the

CompanyConfiguration class:

public class CompanyConfiguration : IEntityTypeConfiguration<Company>
{
 public void Configure(EntityTypeBuilder<Company> builder)

37

 {
 builder.HasData
 (
 new Company
 {
 Id = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870"),
 Name = "IT_Solutions Ltd",
 Address = "583 Wall Dr. Gwynn Oak, MD 21207",
 Country = "USA"
 },
 new Company
 {
 Id = new Guid("3d490a70-94ce-4d15-9494-5248280c2ce3"),
 Name = "Admin_Solutions Ltd",
 Address = "312 Forest Avenue, BF 923",
 Country = "USA"
 }
);
 }
 }

Let’s do the same thing for the EmployeeConfiguration class:

public class EmployeeConfiguration : IEntityTypeConfiguration<Employee>
{
 public void Configure(EntityTypeBuilder<Employee> builder)
 {
 builder.HasData
 (
 new Employee
 {
 Id = new Guid("80abbca8-664d-4b20-b5de-024705497d4a"),
 Name = "Sam Raiden",
 Age = 26,
 Position = "Software developer",
 CompanyId = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870")
 },
 new Employee
 {
 Id = new Guid("86dba8c0-d178-41e7-938c-ed49778fb52a"),
 Name = "Jana McLeaf",
 Age = 30,
 Position = "Software developer",
 CompanyId = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870")
 },
 new Employee
 {
 Id = new Guid("021ca3c1-0deb-4afd-ae94-2159a8479811"),
 Name = "Kane Miller",
 Age = 35,
 Position = "Administrator",
 CompanyId = new Guid("3d490a70-94ce-4d15-9494-5248280c2ce3")
 }
);
 }
}

38

To invoke this configuration, we have to change the RepositoryContext

class:

public class RepositoryContext: DbContext
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 }

 public DbSet<Company> Companies { get; set; }
 public DbSet<Employee> Employees { get; set; }
}

Now, we can create and apply another migration to seed these data to the

database:

PM> Add-Migration InitialData

PM> Update-Database

This will transfer all the data from our configuration files to the respective

tables.

After establishing a connection to the database and creating one, it's time

to create a generic repository that will provide us with the CRUD methods.

As a result, all the methods can be called upon any repository class in our

project.

Furthermore, creating the generic repository and repository classes that

use that generic repository is not going to be the final step. We will go

a step further and create a wrapper class around repository classes and

inject it as a service in a dependency injection container.

39

Consequently, we will be able to instantiate this class once and then call

any repository class we need inside any of our controllers.

The advantages of this approach will become clearer once we use it in the

project.

That said, let’s start by creating an interface for the repository inside the

Contracts project:

public interface IRepositoryBase<T>
{
 IQueryable<T> FindAll(bool trackChanges);
 IQueryable<T> FindByCondition(Expression<Func<T, bool>> expression,
 bool trackChanges);
 void Create(T entity);
 void Update(T entity);
 void Delete(T entity);
}

Right after the interface creation, we are going to create a new Class

Library (.NET Core) project with the name Repository and add

the reference to the Contracts and Entities class libraries. Inside

the Repository project, we are going to create an abstract class

RepositoryBase — which is going to implement the IRepositoryBase

interface.

We need to reference this project from the main project as well.

Additional info: We are going to use EF Core functionalities in the

Repository project. Therefore, we need to install it inside the Repository

project.

Let’s add the following code to the RepositoryBase class:

public abstract class RepositoryBase<T> : IRepositoryBase<T> where T : class
{
 protected RepositoryContext RepositoryContext;

 public RepositoryBase(RepositoryContext repositoryContext)
 {
 RepositoryContext = repositoryContext;
 }

 public IQueryable<T> FindAll(bool trackChanges) =>

40

 !trackChanges ?
 RepositoryContext.Set<T>()
 .AsNoTracking() :
 RepositoryContext.Set<T>();

 public IQueryable<T> FindByCondition(Expression<Func<T, bool>> expression,
 bool trackChanges) =>
 !trackChanges ?
 RepositoryContext.Set<T>()
 .Where(expression)
 .AsNoTracking() :
 RepositoryContext.Set<T>()
 .Where(expression);

 public void Create(T entity) => RepositoryContext.Set<T>().Add(entity);

 public void Update(T entity) => RepositoryContext.Set<T>().Update(entity);

 public void Delete(T entity) => RepositoryContext.Set<T>().Remove(entity);
}

This abstract class as well as the IRepositoryBase interface works with

the generic type T. This type T gives even more reusability to the

RepositoryBase class. That means we don’t have to specify the exact

model (class) right now for the RepositoryBase to work with. We can do

that later on.

Moreover, we can see the trackChanges parameter. We are going to use

it to improve our read-only query performance. When it’s set to false, we

attach the AsNoTracking method to our query to inform EF Core that it

doesn’t need to track changes for the required entities. This greatly

improves the speed of a query.

Now that we have the RepositoryBase class, let’s create the user

classes that will inherit this abstract class.

By inheriting from the RepositoryBase class, they will have access to all

the methods from it. Furthermore, every user class will have its interface

for additional model-specific methods.

41

This way, we are separating the logic that is common for all our

repository user classes and also specific for every user class itself.

Let’s create the interfaces in the Contracts project for the Company and

Employee classes.

namespace Contracts
{
 public interface ICompanyRepository
 {
 }
}

namespace Contracts
{
 public interface IEmployeeRepository
 {
 }
}

After this, we can create repository user classes in the Repository

project.

The first thing we are going to do is to create the CompanyRepository

class:

public class CompanyRepository : RepositoryBase<Company>, ICompanyRepository
{
 public CompanyRepository(RepositoryContext repositoryContext)
 : base(repositoryContext)
 {
 }
}

And then, the EmployeeRepository class:

public class EmployeeRepository : RepositoryBase<Employee>, IEmployeeRepository
{
 public EmployeeRepository(RepositoryContext repositoryContext)
 : base(repositoryContext)
 {
 }
}

After these steps, we are finished creating the repository and repository

user classes. But there are still more things to do.

42

It is quite common for the API to return a response that consists of data

from multiple resources; for example, all the companies and just some

employees older than 30. In such a case, we would have to instantiate

both of our repository classes and fetch data from their resources.

Maybe it’s not a problem when we have only two classes, but what if we

need the combined logic of five or even more different classes? It would

just be too complicated to pull that off.

With that in mind, we are going to create a repository manager class,

which will create instances of repository user classes for us and then

register it inside the dependency injection container. After that, we can

inject it inside our controllers (or inside a business layer class, if we have

a bigger app) with constructor injection (supported by ASP.NET Core).

With the repository manager class in place, we may call any repository

user class we need.

But we are also missing one important part. We have the Create,

Update, and Delete methods in the RepositoryBase class, but they

won’t make any change in the database until we call the SaveChanges

method. Our repository manager class will handle that as well.

That said, let’s get to it and create a new interface in

the Contract project:

public interface IRepositoryManager
{
 ICompanyRepository Company { get; }
 IEmployeeRepository Employee { get; }
 void Save();
}

And add a new class to the Repository project:

public class RepositoryManager : IRepositoryManager
{
 private RepositoryContext _repositoryContext;

43

 private ICompanyRepository _companyRepository;
 private IEmployeeRepository _employeeRepository;

 public RepositoryManager(RepositoryContext repositoryContext)
 {
 _repositoryContext = repositoryContext;
 }

 public ICompanyRepository Company
 {
 get
 {
 if(_companyRepository == null)
 _companyRepository = new CompanyRepository(_repositoryContext);

 return _companyRepository;
 }
 }

 public IEmployeeRepository Employee
 {
 get
 {
 if(_employeeRepository == null)
 _employeeRepository = new EmployeeRepository(_repositoryContext);

 return _employeeRepository;
 }
 }

 public void Save() => _repositoryContext.SaveChanges();
}

As you can see, we are creating properties that will expose the concrete

repositories and also we have the Save() method to be used after all the

modifications are finished on a certain object. This is a good practice

because now we can, for example, add two companies, modify two

employees, and delete one company — all in one action — and then just

call the Save method once. All the changes will be applied or if something

fails, all the changes will be reverted:

_repository.Company.Create(company);
_repository.Company.Create(anotherCompany);
_repository.Employee.Update(employee);
_repository.Employee.Update(anotherEmployee);
_repository.Company.Delete(oldCompany);

_repository.Save();

44

After these changes, we need to register our manager class and add a

reference from the Repository to our main project if not already done so.

So, let’s first modify the ServiceExtensions class by adding this code:

public static void ConfigureRepositoryManager(this IServiceCollection services) =>
 services.AddScoped<IRepositoryManager, RepositoryManager>();

And in the Startup class inside the ConfigureServices method, above

the services.AddController() line, we have to add this code:

services.ConfigureRepositoryManager();

Excellent.

As soon as we add some methods to the specific repository classes, we

are going to be able to test this logic, but we can just take a peek at how

we can inject and use this repository manager.

All we have to do is to inject the RepositoryManager service inside the

controller and we are going to see the Company and Employee properties

that will provide us access to the specific repository methods:

[Route("[controller]")]
[ApiController]
public class WeatherForecastController : ControllerBase
{
 private readonly IRepositoryManager _repository;

 public WeatherForecastController(IRepositoryManager repository)
 {
 _repository = repository;
 }

 [HttpGet]
 public ActionResult<IEnumerable<string>> Get()
 {
 _repository.Company.AnyMethodFromCompanyRepository();
 _repository.Employee.AnyMethodFromEmployeeRepository();

 return new string[] { "value1", "value2" };
 }
}

We did an excellent job here. The repository layer is prepared and ready

to be used to fetch data from the database.

45

As you can see, we have injected our repository inside the controller; this

is a good practice for an application of this size. But for larger-scale

applications, we would create an additional business layer between our

controllers and repository logic and our RepositoryManager service would

be injected inside that Business layer — thus freeing the controller from

repository logic.

Now, we can continue towards handling Get requests in our application.

46

We’re all set to add some business logic to our application. But before

that, let’s talk a bit about controller classes and routing because they play

an important part while working with HTTP requests.

Controllers should only be responsible for handling requests, model

validation, and returning responses to the frontend or some HTTP client.

Keeping business logic away from controllers is a good way to keep them

lightweight, and our code more readable and maintainable.

To create the controller, right-click on the Controllers folder inside the

main project and then Add=>Controller. Then from the menu, choose API

Controller Class and name it CompaniesController.cs.

Our controller should be generated with the default code inside:

namespace CompanyEmployees.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class CompaniesController : ControllerBase

47

 {

 }
}

Every web API controller class inherits from

the ControllerBase abstract class, which provides all necessary

behavior for the derived class.

Also, above the controller class we can see this part of the code:

[Route("api/[controller]")]

This attribute represents routing and we are going to talk more about

routing inside Web APIs.

Web API routing routes incoming HTTP requests to the particular action

method inside the Web API controller. As soon as we send our HTTP

request, the MVC framework parses that request and tries to match it to

an action in the controller.

There are two ways to implement routing in the project:

 Convention based routing and

 Attribute routing

Convention based routing is called such because it establishes a

convention for the URL paths. The first part creates the mapping for

the controller name, the second part creates the mapping for the action

method, and the third part is used for the optional parameter. We can

configure this type of routing in the Startup class in the Configure

method:

48

Attribute routing uses the attributes to map the routes directly to the

action methods inside the controller. Usually, we place the base route

above the controller class, as you can see in our Web API controller class.

Similarly, for the specific action methods, we create their routes right

above them.

While working with the Web API project, the ASP.NET Core team suggests

that we shouldn’t use Convention-based Routing, but Attribute routing

instead.

Different actions can be executed on the resource with the same URI, but

with different HTTP Methods. In the same manner for different actions, we

can use the same HTTP Method, but different URIs. Let’s explain this

quickly.

For Get request, Post, or Delete, we use the same URI /api/companies

but we use different HTTP Methods like GET, POST, or DELETE. But if we

send a request for all companies or just one company, we are going to

use the same GET method but different URIs (/api/companies for all

companies and /api/companies/{companyId} for a single company).

We are going to understand this even more once we start implementing

different actions in our controller.

The resource name in the URI should always be a noun and not an action.

That means if we want to create a route to get all companies, we should

49

create this route: api/companies and not this one:

/api/getCompanies.

The noun used in URI represents the resource and helps the consumer to

understand what type of resource we are working with. So, we shouldn’t

choose the noun products or orders when we work with the companies

resource; the noun should always be companies. Therefore, by following

this convention if our resource is employees (and we are going to work

with this type of resource), the noun should be employees.

Another important part we need to pay attention to is the hierarchy

between our resources. In our example, we have a Company as a

principal entity and an Employee as a dependent entity. When we create

a route for a dependent entity, we should follow a slightly different

convention:

/api/principalResource/{principalId}/dependentResource.

Because our employees can’t exist without a company, the route for the

employee's resource should be:

/api/companies/{companyId}/employees.

With all of this in mind, we can start with the Get requests.

So let’s start.

The first thing we are going to do is to change the base route

from [Route("api/[controller]")] to [Route("api/companies")].

Even though the first route will work just fine, with the second example

we are more specific to show that this routing should point to the

CompaniesController class.

50

Now it is time to create the first action method to return all the companies

from the database. Let’s create a definition for the GetAllCompanies

method in the ICompanyRepository interface:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);
}

For this to work, we need to add a reference from the Entities project

to the Contracts project. But we are going to stop here for a moment to

draw your attention to one important thing.

In our main project, we are referencing the LoggerService, Repository,

and Entities projects. Since both the LoggerService and Repository

projects have a reference for the Contracts project (which has a reference

to the Entities project; we just added it) this means that the main project

has a reference for the Entities project as well through the LoggerService

or Repository projects. That said, we can remove the Entities reference

from the main project:

Now, we can continue with the interface implementation in the

CompanyRepository class:

public class CompanyRepository : RepositoryBase<Company>, ICompanyRepository
{
 public CompanyRepository(RepositoryContext repositoryContext)
 : base(repositoryContext)
 {
 }

51

 public IEnumerable<Company> GetAllCompanies(bool trackChanges) =>
 FindAll(trackChanges)
 .OrderBy(c => c.Name)
 .ToList();
}

Finally, we have to return companies by using the GetAllCompanies

method inside the Web API controller.

The purpose of the action methods inside the Web API controllers is not

only to return results. It is the main purpose, but not the only one. We

need to pay attention to the status codes of our Web API responses as

well. Additionally, we are going to decorate our actions with the HTTP

attributes which will mark the type of the HTTP request to that action.

So, let’s modify the CompaniesController:

[Route("api/companies")]
[ApiController]
public class CompaniesController : ControllerBase
{
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;

 public CompaniesController(IRepositoryManager repository, ILoggerManager logger)
 {
 _repository = repository;
 _logger = logger;
 }

 [HttpGet]
 public IActionResult GetCompanies()
 {
 try
 {
 var companies = _repository.Company.GetAllCompanies(trackChanges: false);

 return Ok(companies);
 }
 catch (Exception ex)
 {
 _logger.LogError($"Something went wrong in the {nameof(GetCompanies)}
action {ex}");
 return StatusCode(500, "Internal server error");
 }
 }
}

Let’s explain this code a bit.

52

First of all, we inject the logger and repository services inside the

constructor. Then by decorating the GetCompanies action with

the [HttpGet] attribute, we are mapping this action to the GET request.

Then, we use both injected services to log the messages and to get the

data from the repository class.

The IActionResult interface supports using a variety of methods, which

return not only the result but also the status codes. In this situation,

the OK method returns all the companies and also the status code 200 —

which stands for OK. If an exception occurs, we are going to return the

internal server error with the status code 500.

Because there is no route attribute right above the action, the route for

the GetCompanies action will be api/companies which is the route

placed on top of our controller.

To check the result, we are going to use a great tool named Postman,

which helps a lot with sending requests and displaying responses. If you

download our exercise files, you will find the file Bonus 2-

CompanyEmployeesRequests.postman_collection.json, which

contains a request collection divided for each chapter of this book. You

can import them in Postman to save yourself the time of manually typing

them:

53

Please note that some GUID values will be different for your project, so

you have to change them according to your values.

So let’s start the application by pressing the F5 button and check that it is

now listening on the https:localhost:5001 address:

If this is not the case, you probably ran it in the IIS mode; so turn the

application off and start it again, but in the CompanyEmployees mode:

Now, we can use Postman to test the result:

https://localhost:5001/api/companies

54

Excellent, everything is working as planned. But we are missing

something. We are using the Company entity to map our requests to the

database and then returning it as a result to the client, and this is not a

good practice. So, in the next part, we are going to learn how to improve

our code with DTO classes.

Data transfer object (DTO) is an object that we use to transport data

between the client and server applications.

So, as we said in a previous section of this book, it is not a good practice

to return entities in the Web API response; we should instead use data

transfer objects. But why is that?

Well, EF Core uses model classes to map them to the tables in the

database and that is the main purpose of a model class. But as we saw,

our models have navigational properties and sometimes we don’t want to

55

map them in an API response. So, we can use DTO to remove any

property or concatenate properties into a single property.

Moreover, there are situations where we want to map all the properties

from a model class to the result — but still, we want to use DTO instead.

The reason is if we change the database, we also have to change the

properties in a model — but that doesn’t mean our clients want the result

changed. So, by using DTO, the result will stay as it was before the model

changes.

As we can see, keeping these objects separate (the DTO and model

classes) leads to a more robust and maintainable code in our application.

Now, when we know why should we separate DTO from a model class in

our code, let’s create the folder DataTransferObjects in the Entities

project with the CompanyDto class inside:

public class CompanyDto
{
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string FullAddress { get; set; }
}

We have removed the Employees property and we are going to use the

FullAddress property to concatenate the Address and Country

properties from the Company class. Furthermore, we are not using

validation attributes in this class, because we are going to use this class

only to return a response to the client. Therefore, validation attributes are

not required.

So, let’s open and modify the GetCompanies action:

[HttpGet]
public IActionResult GetCompanies()
{
 try
 {
 var companies = _repository.Company.GetAllCompanies(trackChanges: false);

56

 var companiesDto = companies.Select(c => new CompanyDto
 {
 Id = c.Id,
 Name = c.Name,
 FullAddress = string.Join(' ', c.Address, c.Country)
 }).ToList();

 return Ok(companiesDto);
 }
 catch (Exception ex)
 {
 _logger.LogError($"Something went wrong in the {nameof(GetCompanies)} action
{ex}");
 return StatusCode(500, "Internal server error");
 }
}

Let’s start our application and test it with the same request from

Postman:

https://localhost:5001/api/companies

This time we get our CompanyDto result, which is a more preferred way.

But this can be improved as well. If we take a look at our mapping code in

the GetCompanies action, we can see that we manually map all the

properties. Sure, it is okay for a few fields — but what if we have a lot

more? There is a better and cleaner way to map our classes and that is by

using the Automapper.

57

AutoMapper is a library that helps us with mapping objects in our

applications. By using this library, we are going to remove the code for

manual mapping — thus making the action readable and maintainable.

So, to install AutoMapper, let’s open a Package Manager Console window

and run the following command:

PM> Install-Package AutoMapper.Extensions.Microsoft.DependencyInjection

After installation, we are going to register this library in the

ConfigureServices method:

services.AddAutoMapper(typeof(Startup));

As soon as our library is registered, we are going to create a profile class

where we specify the source and destination objects for mapping:

public class MappingProfile : Profile
{
 public MappingProfile()
 {
 CreateMap<Company, CompanyDto>()
 .ForMember(c => c.FullAddress,
 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));
 }
}

The MappingProfile class must inherit from the AutoMapper’s Profile

class. In the constructor, we are using the CreateMap method where we

specify the source object and the destination object to map to. Because

we have the FullAddress property in our DTO class, which contains both

the Address and the Country from the model class, we have to specify

additional mapping rules with the ForMember method.

Now, we can use AutoMapper in our controller like any other service

registered in IoC:

[Route("api/companies")]
[ApiController]
public class CompaniesController : ControllerBase

58

{
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;
 private readonly IMapper _mapper;

 public CompaniesController(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper)
 {
 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 }

 [HttpGet]
 public IActionResult GetCompanies()
 {
 try
 {
 var companies = _repository.Company.GetAllCompanies(trackChanges: false);

 var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

 return Ok(companiesDto);
 }
 catch (Exception ex)
 {
 _logger.LogError($"Something went wrong in the {nameof(GetCompanies)}
action {ex}");

 return StatusCode(500, "Internal server error");
 }
 }

Excellent.

Let’s use Postman again to send the request to test our app:

59

https://localhost:5001/api/companies

We can see that everything is working as it is supposed to, but now with

much better code.

60

Exception handling helps us deal with the unexpected behavior of our

system. To handle exceptions, we use the try-catch block in our code

as well as the finally keyword to clean up our resources afterwards.

Even though there is nothing wrong with the try-catch blocks in our

Actions in the Web API project, we can extract all the exception handling

logic into a single centralized place. By doing that, we make our actions

cleaner, more readable, and the error handling process more

maintainable.

In this chapter, we are going to refactor our code to use the built-in

middleware and our custom middleware for global error handling to

demonstrate the benefits of this approach.

The UseExceptionHandler middleware is a built-in middleware that we

can use to handle exceptions. So, let’s dive into the code to see this

middleware in action.

We are going to create a new ErrorModel folder in the Entities

project, and add the new class ErrorDetails in that folder:

public class ErrorDetails
{
 public int StatusCode { get; set; }
 public string Message { get; set; }

 public override string ToString() => JsonSerializer.Serialize(this);
}

We are going to use this class for the details of our error message.

To continue, in the Extensions folder in the main project, we are going

to add a new static class: ExceptionMiddlewareExtensions.cs.

61

Now, we need to modify it:

public static class ExceptionMiddlewareExtensions
{
 public static void ConfigureExceptionHandler(this IApplicationBuilder app,
ILoggerManager logger)
 {
 app.UseExceptionHandler(appError =>
 {
 appError.Run(async context =>
 {
 context.Response.StatusCode = (int)HttpStatusCode.InternalServerError;
 context.Response.ContentType = "application/json";

 var contextFeature = context.Features.Get<IExceptionHandlerFeature>();
 if (contextFeature != null)
 {
 logger.LogError($"Something went wrong: {contextFeature.Error}");

 await context.Response.WriteAsync(new ErrorDetails()
 {
 StatusCode = context.Response.StatusCode,
 Message = "Internal Server Error."
 }.ToString());
 }
 });
 });
 }
}

In the code above, we’ve created an extension method in which we’ve

registered the UseExceptionHandler middleware. Then, we’ve

populated the status code and the content type of our response, logged

the error message, and finally returned the response with the custom

created object.

To be able to use this extension method, let’s modify the Configure

method inside the Startup class:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env,
ILoggerManager logger)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {

62

 app.UseHsts();
 }

 app.ConfigureExceptionHandler(logger);
 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseCors("CorsPolicy");

 app.UseForwardedHeaders(new ForwardedHeadersOptions
 {
 ForwardedHeaders = ForwardedHeaders.All
 });

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
}

Finally, let’s remove the try-catch block from our code:

[HttpGet]
public IActionResult GetCompanies()
{
 var companies = _repository.Company.GetAllCompanies(trackChanges: false);

 var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

 return Ok(companiesDto);
}

And there we go. Our action method is much cleaner now. More

importantly, we can reuse this functionality to write more readable

actions in the future.

To inspect this functionality, let’s add the following line to the

GetCompanies action, just to simulate an error:

throw new Exception("Exception");

And send a request from Postman:

63

https://localhost:5001/api/companies

We can check our log messages to make sure that logging is working as

well.

64

As of now, we can continue with GET requests by adding additional

actions to our controller. Moreover, we are going to create one more

controller for the Employee resource and implement an additional action

in it.

Let’s start by modifying the ICompanyRepository interface:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);
 Company GetCompany(Guid companyId, bool trackChanges);
}

Then, we are going to implement this interface in the

CompanyRepository.cs file:

public Company GetCompany(Guid companyId, bool trackChanges) =>
 FindByCondition(c => c.Id.Equals(companyId), trackChanges)
 .SingleOrDefault();

Finally, let’s change the CompanyController class:

[HttpGet("{id}")]
public IActionResult GetCompany(Guid id)
{
 var company = _repository.Company.GetCompany(id, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 return NotFound();
 }
 else
 {
 var companyDto = _mapper.Map<CompanyDto>(company);
 return Ok(companyDto);
 }
}

The route for this action is /api/companies/id and that’s because the

/api/companies part applies from the root route (on top of the

65

controller) and the id part is applied from the action attribute

[HttpGet(“{id}“)].

So, our action returns IActionResult, like the previous one, and we

fetch a single company from the database. If it doesn’t exist, we use the

NotFound method to return a 404 status code. From this example, we

can see that ASP.NET Core provides us with a variety of semantical

methods that state what we can use them for, just by reading their

names. The Ok method is for the good result (status code 200) and the

NotFound method is for the NotFound result (status code 404).

If a company exists in the database, we just map it to the CompanyDto

type and return it to the client.

Let’s use Postman to send valid and invalid requests towards our API:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

Invalid request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce2

66

Up until now, we have been working only with the company, which is a

parent (principal) entity in our API. But for each company, we have a

related employee (dependent entity). Every employee must be related to

a certain company and we are going to create our URIs in that manner.

That said, let’s create a new controller and name it

EmployeesController:

[Route("api/companies/{companyId}/employees")]
[ApiController]
public class EmployeesController : ControllerBase
{
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;
 private readonly IMapper _mapper;

 public EmployeesController(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper)
 {
 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 }
}

We are familiar with this code, but our main route is a bit different. As we

said, a single employee can’t exist without a company entity and this is

67

exactly what are we exposing through this URI. To get an employee or

employees from the database, we have to specify the companyId

parameter, and that is something all actions will have in common. For

that reason, we have specified this route as our root route.

Before we create an action to fetch all the employees per company, we

have to modify the IEmployeeRepository interface:

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
}

After interface modification, we are going to modify the

EmployeeRepository class:

public IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges) =>
 FindByCondition(e => e.CompanyId.Equals(companyId), trackChanges)
 .OrderBy(e => e.Name);

Finally, let’s modify the Employees controller:

[HttpGet]
public IActionResult GetEmployeesForCompany(Guid companyId)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeesFromDb = _repository.Employee.GetEmployees(companyId,
trackChanges: false);

 return Ok(employeesFromDb);
 }

This code is pretty straightforward — nothing we haven’t seen so far —

but we need to explain just one thing. As you can see, we have the

companyId parameter in our action and this parameter will be mapped

from the main route. For that reason, we didn’t place it in the [HttpGet]

attribute as we did with the GetCompany action.

68

But, we know that something is wrong here because we are using a

model in our response and not a data transfer object. To fix that, let’s add

another class in the DataTransferObjects folder:

public class EmployeeDto
{
 public Guid Id { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
 public string Position { get; set; }
}

After that, let’s create another mapping rule:

public MappingProfile()
{
 CreateMap<Company, CompanyDto>()
 .ForMember(c => c.FullAddress,
 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));

 CreateMap<Employee, EmployeeDto>();
}

Finally, let’s modify our action:

[HttpGet]
public IActionResult GetEmployeesForCompany(Guid companyId)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeesFromDb = _repository.Employee.GetEmployees(companyId,
trackChanges: false);

 var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

 return Ok(employeesDto);
}

That done, we can send a request with a valid companyId:

69

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees

And with an invalid companyId:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991873/employees

Excellent. Let’s continue by fetching a single employee.

So, as we did in previous sections, let’s start with an interface

modification:

70

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
 Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
}

Now, let’s implement this method in the EmployeeRepository class:

public Employee GetEmployee(Guid companyId, Guid id, bool trackChanges) =>
 FindByCondition(e => e.CompanyId.Equals(companyId) && e.Id.Equals(id),
trackChanges)
 .SingleOrDefault();

Finally, let’s modify the EmployeeController class:

[HttpGet("{id}")]
public IActionResult GetEmployeeForCompany(Guid companyId, Guid id)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeeDb = _repository.Employee.GetEmployee(companyId, id, trackChanges:
false);
 if(employeeDb == null)
 {
 _logger.LogInfo($"Employee with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 var employee = _mapper.Map<EmployeeDto>(employeeDb);

 return Ok(employee);
}

Excellent.

We can test this action by using already created requests from the Bonus

2-CompanyEmployeesRequests.postman_collection.json file placed

in the folder with the exercise files:

71

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees/86dba8c0-d178-
41e7-938c-ed49778fb52a

When we send the request with an invalid company or employee id:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees/86dba8c0-d178-
41e7-938c-ed49778fb52c

Our results are pretty self-explanatory.

Until now, we have received only JSON formatted responses from our API.

But what if we want to support some other format, like XML for example?

Well, in the next chapter we are going to learn more about Content

Negotiation and enabling different formats for our responses.

72

Content negotiation is one of the quality-of-life improvements we can add

to our REST API to make it more user friendly and flexible. And when we

design an API, isn’t that what we want to achieve in the first place?

Content negotiation is an HTTP feature that has been around for a while,

but for one reason or another, it is often a bit underused.

In short, content negotiation lets you choose or rather “negotiate” the

content you want in to get in response to the REST API request.

By default, ASP.NET Core Web API returns a JSON formatted result.

We can confirm that by looking at the response from the GetCompanies

action:

https://localhost:5001/api/companies

We can clearly see that the default result when calling GET on

/api/companies returns the JSON result. We have also used

73

the Accept header (as you can see in the picture above) to try forcing

the server to return other media types like plain text and XML.

But that doesn’t work. Why?

Because we need to configure server formatters to format a response the

way we want it.

Let’s see how to do that.

A server does not explicitly specify where it formats a response to JSON.

But you can override it by changing configuration options through

the AddControllers method.

We can add the following options to enable the server to format the XML

response when the client tries negotiating for it:

public void ConfigureServices(IServiceCollection services)
{
 services.ConfigureCors();
 services.ConfigureIISIntegration();
 services.ConfigureLoggerService();
 services.ConfigureSqlContext(Configuration);
 services.ConfigureRepositoryManager();
 services.AddAutoMapper(typeof(Startup));

 services.AddControllers(config =>
 {
 config.RespectBrowserAcceptHeader = true;
 }).AddXmlDataContractSerializerFormatters();
}

First things first, we must tell a server to respect the Accept header. After

that, we just add the AddXmlDataContractSerializerFormatters

method to support XML formatters.

Now that we have our server configured, let’s test the content negotiation

once more.

74

Let’s see what happens now if we fire the same request through Postman:

https://localhost:5001/api/companies

There is our XML response.

Now by changing the Accept header from text/xml to text/json, we

can get differently formatted responses — and that is quite awesome,

wouldn’t you agree?

Okay, that was nice and easy.

But what if despite all this flexibility a client requests a media type that a

server doesn’t know how to format?

Currently, it – the server - will default to a JSON type.

But we can restrict this behavior by adding one line to the configuration:

services.AddControllers(config =>
{
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
}).AddXmlDataContractSerializerFormatters();

75

We added the ReturnHttpNotAcceptable = true option, which tells

the server that if the client tries to negotiate for the media type the

server doesn’t support, it should return the 406 Not Acceptable status

code.

This will make our application more restrictive and force the API

consumer to request only the types the server supports. The 406 status

code is created for this purpose.

Now, let’s try fetching the text/css media type using Postman to see

what happens:

https://localhost:5001/api/companies

And as expected, there is no response body and all we get is a nice 406

Not Acceptable status code.

So far so good.

If we want our API to support content negotiation for a type that is not “in

the box,” we need to have a mechanism to do this.

So, how can we do that?

76

ASP.NET Core supports the creation of custom formatters. Their

purpose is to give us the flexibility to create our formatter for any media

types we need to support.

We can make the custom formatter by using the following method:

 Create an output formatter class that inherits the

TextOutputFormatter class.

 Create an input formatter class that inherits the

TextInputformatter class.

 Add input and output classes to the InputFormatters and

OutputFormatters collections the same way we did for the XML

formatter.

Now let’s have some fun and implement a custom CSV formatter for our

example.

Since we are only interested in formatting responses, we need to

implement only an output formatter. We would need an input formatter

only if a request body contained a corresponding type.

The idea is to format a response to return the list of companies in a CSV

format.

Let’s add a CsvOutputFormatter class to our main project:

public class CsvOutputFormatter : TextOutputFormatter
{
 public CsvOutputFormatter()
 {
 SupportedMediaTypes.Add(MediaTypeHeaderValue.Parse("text/csv"));
 SupportedEncodings.Add(Encoding.UTF8);
 SupportedEncodings.Add(Encoding.Unicode);
 }

 protected override bool CanWriteType(Type type)
 {

77

 if (typeof(CompanyDto).IsAssignableFrom(type) ||
typeof(IEnumerable<CompanyDto>).IsAssignableFrom(type))
 {
 return base.CanWriteType(type);
 }

 return false;
 }

 public override async Task WriteResponseBodyAsync(OutputFormatterWriteContext
context, Encoding selectedEncoding)
 {
 var response = context.HttpContext.Response;
 var buffer = new StringBuilder();

 if (context.Object is IEnumerable<CompanyDto>)
 {
 foreach (var company in (IEnumerable<CompanyDto>)context.Object)
 {
 FormatCsv(buffer, company);
 }
 }
 else
 {
 FormatCsv(buffer, (CompanyDto)context.Object);
 }

 await response.WriteAsync(buffer.ToString());
 }

 private static void FormatCsv(StringBuilder buffer, CompanyDto company)
 {
 buffer.AppendLine($"{company.Id},\"{company.Name},\"{company.FullAddress}\"");
 }
}

There are a few things to note here:

 In the constructor, we define which media type this formatter should

parse as well as encodings.

 The CanWriteType method is overridden, and it indicates whether

or not the CompanyDto type can be written by this serializer.

 The WriteResponseBodyAsync method constructs the response.

 And finally, we have the FormatCsv method that formats a response

the way we want it.

78

The class is pretty straightforward to implement, and the main thing that

you should focus on is the FormatCsvmethod logic.

Now we just need to add the newly made formatter to the list

of OutputFormatters in the ServicesExtensions class:

public static IMvcBuilder AddCustomCSVFormatter(this IMvcBuilder builder) =>
 builder.AddMvcOptions(config => config.OutputFormatters.Add(new
CsvOutputFormatter()));

And to call it in the AddControllers:

services.AddControllers(config =>
{
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
}).AddXmlDataContractSerializerFormatters()
 .AddCustomCSVFormatter();

Let’s run this and see if it actually works. This time we will put

text/csv as the value for the Accept header:

https://localhost:5001/api/companies

Well, what do you know, it works!

In this chapter, we finished working with GET requests in our project and

we are ready to move on to the POST PUT and DELETE requests. We have

a lot more ground to cover, so let’s get down to business.

79

Before we start with the Create, Update, and Delete actions, we should

explain two important principles in the HTTP standard. Those standards

are Method Safety and Method Idempotency.

We can consider a method a safe one if it doesn’t change the resource

representation. So, in other words, the resource shouldn’t be changed

after our method is executed.

If we can call a method multiple times with the same result, we can

consider that method idempotent. So in other words, the side effects of

calling it once are the same as calling it multiple times.

Let’s see how this applies to HTTP methods:

HTTP Method Is it Safe? Is it Idempotent?

GET Yes Yes

OPTIONS Yes Yes

HEAD Yes Yes

POST No No

DELETE No Yes

PUT No Yes

PATCH No No

As you can see, the GET, OPTIONS, and HEAD methods are both safe and

idempotent, because when we call those methods they will not change the

resource representation. Furthermore, we can call these methods multiple

times, but they will return the same result every time.

The POST method is neither safe nor idempotent. It causes changes in the

resource representation because it creates them. Also, if we call the POST

method multiple times, it will create a new resource every time.

80

The DELETE method is not safe because it removes the resource, but it is

idempotent because if we delete the same resource multiple times, we

will get the same result as if we have deleted it only once.

PUT is not safe either. When we update our resource, it changes. But it is

idempotent because no matter how many times we update the same

resource with the same request it will have the same representation as if

we have updated it only once.

Finally, the PATCH method is neither safe nor idempotent.

Now that we’ve learned about these principles, we can continue with our

application by implementing the rest of the HTTP methods (we have

already implemented GET). We can always use this table to decide which

method to use for which use case.

81

In this section, we are going to show you how to use the POST HTTP

method to create resources in the database.

So, let’s start.

Firstly, let’s modify the decoration attribute for the GetCompany action in

the Companies controller:

[HttpGet("{id}", Name = "CompanyById")]

With this modification, we are setting the name for the action. This name

will come in handy in the action method for creating a new company.

We have a DTO class for the output (the GET methods), but right now we

need the one for the input as well. So, let’s create a new class in the

Entities/DataTransferObjects folder:

public class CompanyForCreationDto
{
 public string Name { get; set; }
 public string Address { get; set; }
 public string Country { get; set; }
}

We can see that this DTO class is almost the same as the Company class

but without the Id property. We don’t need that property when we create

an entity.

We should pay attention to one more thing. In some projects, the input

and output DTO classes are the same, but we still recommend separating

them for easier maintenance and refactoring of our code. Furthermore,

when we start talking about validation, we don’t want to validate the

output objects — but we definitely want to validate the input ones.

82

With all of that said and done, let’s continue by modifying the

ICompanyRepository interface:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);
 Company GetCompany(Guid companyId, bool trackChanges);
 void CreateCompany(Company company);
}

After the interface modification, we are going to implement that interface:

public void CreateCompany(Company company) => Create(company);

We don’t explicitly generate a new Id for our company; this would be

done by EF Core. All we do is to set the state of the company to Added.

Before we add a new action in our Companies controller, we have to

create another mapping rule for the Company and

CompanyForCreationDto objects. Let’s do this in the MappingProfile

class:

public MappingProfile()
{
 CreateMap<Company, CompanyDto>()
 .ForMember(c => c.FullAddress,
 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));

 CreateMap<Employee, EmployeeDto>();

 CreateMap<CompanyForCreationDto, Company>();
}

Our POST action will accept a parameter of the type

CompanyForCreationDto, but we need the Company object for creation.

Therefore, we have to create this mapping rule.

Last, let’s modify the controller:

[HttpPost]
public IActionResult CreateCompany([FromBody]CompanyForCreationDto company)
{
 if(company == null)
 {
 _logger.LogError("CompanyForCreationDto object sent from client is null.");

83

 return BadRequest("CompanyForCreationDto object is null");
 }

 var companyEntity = _mapper.Map<Company>(company);

 _repository.Company.CreateCompany(companyEntity);
 _repository.Save();

 var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

 return CreatedAtRoute("CompanyById", new { id = companyToReturn.Id },
companyToReturn);
}

Let’s use Postman to send the request and examine the result:

https://localhost:5001/api/companies

Let’s talk a little bit about this code. The interface and the repository parts

are pretty clear, so we won’t talk about that. But the code in the

controller contains several things worth mentioning.

84

If you take a look at the request URI, you’ll see that we use the same one

as for the GetCompanies action: api/companies — but this time we are

using the POST request.

The CreateCompany method has its own [HttpPost] decoration

attribute, which restricts it to POST requests. Furthermore, notice the

company parameter which comes from the client. We are not collecting it

from the URI but from the request body. Thus the usage of

the [FromBody] attribute. Also, the company object is a complex type;

therefore, we have to use [FromBody].

If we wanted to, we could explicitly mark the action to take this

parameter from the URI by decorating it with the [FromUri] attribute,

though we wouldn’t recommend that at all because of security reasons

and the complexity of the request.

Because the company parameter comes from the client, it could happen

that it can’t be deserialized. As a result, we would need to validate it

against the reference type’s default value, which is null.

After validation, we map the company for creation to the company entity,

call the repository method for creation, and call the Save() method to

save the entity to the database. After the save action, we map the

company entity to the company DTO object to return it to the client.

The last thing to mention is this part of the code:

CreatedAtRoute("CompanyById", new { id = companyToReturn.Id }, companyToReturn);

CreatedAtRoute will return a status code 201, which stands for

Created. Also, it will populate the body of the response with the new

company object as well as the Location attribute within the

response header with the address to retrieve that company. We need to

provide the name of the action, where we can retrieve the created entity.

85

If we take a look at the headers part of our response, we are going to see

a link to retrieve the created company:

Finally, from the previous example, we can confirm that the POST method

is neither safe nor idempotent. We saw that when we send the POST

request, it is going to create a new resource in the database — thus

changing the resource representation. Furthermore, if we try to send this

request a couple of times, we will get a new object for every request (it

will have a different Id for sure).

Let’s continue with child resources creation.

While creating our company, we created the DTO object required for the

CreateCompany action. So, for employee creation, we are going to do the

same thing:

public class EmployeeForCreationDto
{
 public string Name { get; set; }
 public int Age { get; set; }
 public string Position { get; set; }
}

We don’t have the Id property because we are going to create that Id on

the server-side. But additionally, we don’t have the CompanyId because

86

we accept that parameter through the route:

[Route("api/companies/{companyId}/employees")]

The next step is to modify the IEmployeeRepository interface:

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
 Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
 void CreateEmployeeForCompany(Guid companyId, Employee employee);
}

Of course, we have to implement this interface:

public void CreateEmployeeForCompany(Guid companyId, Employee employee)
{
 employee.CompanyId = companyId;
 Create(employee);
}

Because we are going to accept the employee DTO object in our action,

but we also have to send an employee object to this repository method,

we have to create an additional mapping rule in the MappingProfile

class:

CreateMap<EmployeeForCreationDto, Employee>();

Now, we can add a new action in the EmployeesController:

[HttpPost]
public IActionResult CreateEmployeeForCompany(Guid companyId, [FromBody]
EmployeeForCreationDto employee)
{
 if(employee == null)
 {
 _logger.LogError("EmployeeForCreationDto object sent from client is null.");
 return BadRequest("EmployeeForCreationDto object is null");
 }

 var company = _repository.Company.GetCompany(companyId, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeeEntity = _mapper.Map<Employee>(employee);

 _repository.Employee.CreateEmployeeForCompany(companyId, employeeEntity);
 _repository.Save();

87

 var employeeToReturn = _mapper.Map<EmployeeDto>(employeeEntity);

 return CreatedAtRoute("GetEmployeeForCompany", new { companyId, id =
employeeToReturn.Id }, employeeToReturn);
}

There are some differences in this code compared to the CreateCompany

action. The first is that we have to check whether that company exists in

the database because there is no point in creating an employee for a

company that does not exist.

The second difference is the return statement, which now has two

parameters for the anonymous object.

For this to work, we have to modify the HTTP attribute above the

GetEmployeeForCompany action:

[HttpGet("{id}", Name = "GetEmployeeForCompany")]

Let’s give this a try:

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

Excellent. A new employee was created.

88

If we take a look at the Headers tab, we'll see a link to fetch our newly

created employee. If you copy that link and send another request with it,

you will get this employee for sure:

There are situations where we want to create a parent resource with its

children. Rather than using multiple requests for every single child, we

want to do this in the same request with the parent resource.

We are going to show you how to do this.

The first thing we are going to do is extend the CompanyForCreationDto

class:

public class CompanyForCreationDto
{
 public string Name { get; set; }
 public string Address { get; set; }
 public string Country { get; set; }

 public IEnumerable<EmployeeForCreationDto> Employees { get; set; }
}

We are not going to change the action logic inside the controller nor the

repository logic; everything is great there. That’s all. Let’s test it:

89

https://localhost:5001/api/companies

You can see that this company was created successfully.

Now we can copy the location link from the Headers tab, paste it in

another Postman tab, and just add the /employees part:

We have confirmed that the employees were created as well.

90

Until now, we have been creating a single resource whether it was

Company or Employee. But it is quite normal to create a collection of

resources, and in this section that is something we are going to work

with.

If we take a look at the CreateCompany action, for example, we can see

that the return part points to the CompanyById route (the GetCompany

action). That said, we don’t have the GET action for the collection creating

action to point to. So, before we start with the POST collection action, we

are going to create the GetCompanyCollection action in the Companies

controller.

But first, let's modify the ICompanyRepository interface:

IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges);

Then we have to change the CompanyRepository class:

public IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges) =>
 FindByCondition(x => ids.Contains(x.Id), trackChanges)
 .ToList();

After that, we can add a new action in the controller:

[HttpGet("collection/({ids})", Name = "CompanyCollection")]
public IActionResult GetCompanyCollection(IEnumerable<Guid> ids)
{
 if(ids == null)
 {
 _logger.LogError("Parameter ids is null");
 return BadRequest("Parameter ids is null");
 }

 var companyEntities = _repository.Company.GetByIds(ids, trackChanges: false);

 if(ids.Count() != companyEntities.Count())
 {
 _logger.LogError("Some ids are not valid in a collection");
 return NotFound();
 }

 var companiesToReturn = _mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
 return Ok(companiesToReturn);
}

91

And that's it. These actions are pretty straightforward, so let's continue

towards POST implementation:

[HttpPost("collection")]
public IActionResult CreateCompanyCollection([FromBody]
IEnumerable<CompanyForCreationDto> companyCollection)
{
 if(companyCollection == null)
 {
 _logger.LogError("Company collection sent from client is null.");
 return BadRequest("Company collection is null");
 }

 var companyEntities = _mapper.Map<IEnumerable<Company>>(companyCollection);
 foreach (var company in companyEntities)
 {
 _repository.Company.CreateCompany(company);
 }

 _repository.Save();

 var companyCollectionToReturn =
_mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
 var ids = string.Join(",", companyCollectionToReturn.Select(c => c.Id));

 return CreatedAtRoute("CompanyCollection", new { ids },
companyCollectionToReturn);
}

So, we check if our collection is null and if it is, we return a bad request.

If it isn’t, then we map that collection and save all the collection elements

to the database. Finally, we take all the ids as a comma-separated string

and navigate to the GET action for fetching our created companies.

Now you may ask, why are we sending a comma-separated string when

we expect a collection of ids in the GetCompanyCollection action?

Well, we can’t just pass a list of ids in the CreatedAtRoute method

because there is no support for the Header Location creation with the list.

You may try it, but we're pretty sure you would get the location like this:

92

We can test our create action now:

https://localhost:5001/api/companies/collection

Excellent. Let’s check the header tab:

93

 We can see a valid location link. So, we can copy it and try to fetch our

newly created companies:

But we are getting the 415 Unsupported Media Type message. This is

because our API can’t bind the string type parameter to the

IEnumerable<Guid> argument.

Well, we can solve this with a custom model binding.

Let’s create the new folder ModelBinders in the main project and inside

the new class ArrayModelBinder:

public class ArrayModelBinder : IModelBinder
{
 public Task BindModelAsync(ModelBindingContext bindingContext)

94

 {
 if(!bindingContext.ModelMetadata.IsEnumerableType)
 {
 bindingContext.Result = ModelBindingResult.Failed();
 return Task.CompletedTask;
 }

 var providedValue = bindingContext.ValueProvider
 .GetValue(bindingContext.ModelName)
 .ToString();
 if(string.IsNullOrEmpty(providedValue))
 {
 bindingContext.Result = ModelBindingResult.Success(null);
 return Task.CompletedTask;
 }

 var genericType =
bindingContext.ModelType.GetTypeInfo().GenericTypeArguments[0];
 var converter = TypeDescriptor.GetConverter(genericType);

 var objectArray = providedValue.Split(new[] { "," },
 StringSplitOptions.RemoveEmptyEntries)
 .Select(x => converter.ConvertFromString(x.Trim()))
 .ToArray();

 var guidArray = Array.CreateInstance(genericType, objectArray.Length);
 objectArray.CopyTo(guidArray, 0);
 bindingContext.Model = guidArray;

 bindingContext.Result = ModelBindingResult.Success(bindingContext.Model);
 return Task.CompletedTask;
 }
}

At first glance, this code might be hard to comprehend, but once we

explain it, it will be easier to understand.

We are creating a model binder for the IEnumerable type. Therefore, we

have to check if our parameter is the same type.

Next, we extract the value (a comma-separated string of GUIDs) with the

ValueProvider.GetValue() expression. Because it is type string, we

just check whether it is null or empty. If it is, we return null as a result

because we have a null check in our action in the controller. If it is not,

we move on.

In the genericType variable, with the reflection help, we store the type

the IEnumerable consists of. In our case, it is GUID. With the

95

converter variable, we create a converter to a GUID type. As you can

see, we didn’t just force the GUID type in this model binder; instead, we

inspected what is the nested type of the IEnumerable parameter and

then created a converter for that exact type, thus making this binder

generic.

After that, we create an array of type object (objectArray) that consist

of all the GUID values we sent to the API and then create an array of

GUID types (guidArray), copy all the values from the objectArray to

the guidArray, and assign it to the bindingContext.

And that is it. Now, we have just to make a slight modification in the

GetCompanyCollection action:

public IActionResult GetCompanyCollection([ModelBinder(BinderType =

typeof(ArrayModelBinder))]IEnumerable<Guid> ids)

Excellent.

Our ArrayModelBinder will be triggered before an action executes. It

will convert the sent string parameter to the IEnumerable<Guid> type,

and then the action will be executed:

96

Well done.

We are ready to continue towards DELETE actions.

97

Let’s start this section by deleting a child resource first.

So, let’s modify the IEmployeeRepository interface:

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
 Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
 void CreateEmployeeForCompany(Guid companyId, Employee employee);
 void DeleteEmployee(Employee employee);
}

The next step for us is to modify the EmployeeRepository class:

public void DeleteEmployee(Employee employee)
{
 Delete(employee);
}

Finally, we can add a delete action to the controller class:

[HttpDelete("{id}")]
public IActionResult DeleteEmployeeForCompany(Guid companyId, Guid id)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeeForCompany = _repository.Employee.GetEmployee(companyId, id,
trackChanges: false);
 if(employeeForCompany == null)
 {
 _logger.LogInfo($"Employee with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 _repository.Employee.DeleteEmployee(employeeForCompany);
 _repository.Save();

 return NoContent();
}

There is nothing new with this action. We collect the companyId from the

root route and the employee’s id from the passed argument. We have to

check if the company exists. Then, we check for the employee entity.

98

Finally, we delete our employee and return the NoContent() method,

which returns the status code 204 No Content.

Let’s test this:

https://localhost:5001/api/companies/0AD5B971-FF51-414D-AF01-34187E407557/employees/DE662003-ACC3-
4F9F-9D82-0A74F64594C1

Excellent. It works great.

You can try to get that employee from the database, but you will get 404

for sure:

https://localhost:5001/api/companies/0AD5B971-FF51-414D-AF01-34187E407557/employees/DE662003-ACC3-
4F9F-9D82-0A74F64594C1

We can see that the DELETE request isn’t safe because it deletes the

resource, thus changing the resource representation. But if we try to send

this delete request one or even more times, we would get the same 404

result because the resource doesn’t exist anymore. That’s what makes the

DELETE request idempotent.

With Entity Framework Core, this action is pretty simple. With the basic

configuration, cascade deleting is enabled, which means deleting a parent

resource will automatically delete all of its children. We can confirm that

from the migration file:

99

So, all we have to do is to create a logic for deleting the parent resource.

Well, let’s do that following the same steps as in a previous example:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);
 Company GetCompany(Guid companyId, bool trackChanges);
 void CreateCompany(Company company);
 IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges);
 void DeleteCompany(Company company);
}

Then let’s modify the repository class:

public void DeleteCompany(Company company)
{
 Delete(company);
}

Finally, let’s modify our controller:

[HttpDelete("{id}")]
public IActionResult DeleteCompany(Guid id)
{
 var company = _repository.Company.GetCompany(id, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 _repository.Company.DeleteCompany(company);
 _repository.Save();

 return NoContent();
}

And let’s test our action:

100

https://localhost:5001/api/companies/0AD5B971-FF51-414D-AF01-34187E407557

It works.

You can check in your database that this company alongside its children

doesn’t exist anymore.

There we go. We have finished working with DELETE requests and we are

ready to continue to the PUT requests.

For the PUT requests, we are going to inspect our console window for the

SQL generated commands. If you can’t see those, then just add this code

in the appsettings.json file:

 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information",
 "Microsoft.EntityFrameworkCore": "Information"
 },

101

In this section, we are going to show you how to update a resource using

the PUT request. We are going to update a child resource first and then

we are going to show you how to execute insert while updating a parent

resource.

In the previous sections, we first changed our interface, then the

repository class, and finally the controller. But for the update, this doesn’t

have to be the case.

Let’s go step by step.

The first thing we are going to do is to create another DTO class for

update purposes:

public class EmployeeForUpdateDto
{
 public string Name { get; set; }
 public int Age { get; set; }
 public string Position { get; set; }
}

We do not require the Id property because it will be accepted through the

URI, like with the DELETE requests. Additionally, this DTO contains the

same properties as the DTO for creation, but there is a conceptual

difference between those two DTO classes. One is for updating and the

other is for creating. Furthermore, once we get to the validation part, we

will understand the additional difference between those two.

Because we have additional DTO class, we require an additional mapping

rule:

CreateMap<EmployeeForUpdateDto, Employee>();

Now, when we have all of these, let’s modify the EmployeesController:

102

[HttpPut("{id}")]
public IActionResult UpdateEmployeeForCompany(Guid companyId, Guid id, [FromBody]
 EmployeeForUpdateDto employee)
{
 if(employee == null)
 {
 _logger.LogError("EmployeeForUpdateDto object sent from client is null.");
 return BadRequest("EmployeeForUpdateDto object is null");
 }

 var company = _repository.Company.GetCompany(companyId, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeeEntity = _repository.Employee.GetEmployee(companyId, id, trackChanges:
true);
 if(employeeEntity == null)
 {
 _logger.LogInfo($"Employee with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 _mapper.Map(employee, employeeEntity);
 _repository.Save();

 return NoContent();
}

We are using the PUT attribute with the id parameter to annotate this

action. That means that our route for this action is going to be:

api/companies/{companyId}/employees/{id}.

As you can see, we have three checks in our code and they are familiar to

us. But we have one difference. Pay attention to the way we fetch the

company and the way we fetch the employeeEntity. Do you see the

difference?

The trackChanges parameter is set to true for the employeeEntity.

That’s because we want EF Core to track changes on this entity. This

means that as soon as we change any property in this entity, EF Core will

set the state of that entity to Modified.

103

As you can see, we are mapping from the employee object (we will

change just the age property in a request) to the employeeEntity —

thus changing the state of the employeeEntity object to Modified.

Because our entity has a modified state, it is enough to call the Save

method without any additional update actions. As soon as we call the

Save method, our entity is going to be updated in the database.

Finally, we return the 204 NoContent status.

We can test our action:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

And it works; we get the 204 No Content status.

We can check our executed query through EF Core to confirm that only

the Age column is updated:

Excellent.

104

You can send the same request with the invalid company id or employee

id. In both cases, you should get a 404 response, which is a valid

response to this kind of situation.

Additional note: As you can see, we have changed only the Age

property, but we have sent all the other properties with unchanged values

as well. Therefore, Age is only updated in the database. But if we send

the object with just the Age property, without the other properties, those

other properties will be set to their default values and the whole object

will be updated — not just the Age column. That’s because the PUT is a

request for a full update. This is very important to know.

11.1.1 About the Update Method from the RepositoryBase

Class

Right now, you might be asking: “Why do we have the Update method in

the RepositoryBase class if we are not using it?”

The update action we just executed is a connected update (an update

where we use the same context object to fetch the entity and to update

it). But sometimes we can work with disconnected updates. This kind of

update action uses different context objects to execute fetch and update

actions or sometimes we can receive an object from a client with the Id

property set as well, so we don’t have to fetch it from the database. In

that situation, all we have to do is to inform EF Core to track changes on

that entity and to set its state to modified. We can do both actions with

the Update method from our RepositoryBase class. So, you see, having

that method is crucial as well.

One note, though. If we use the Update method from our repository,

even if we change just the Age property, all properties will be updated in

the database.

105

While updating a parent resource, we can create child resources as well

without too much effort. EF Core helps us a lot with that process. Let’s

see how.

The first thing we are going to do is to create a DTO class for update:

public class CompanyForUpdateDto
{
 public string Name { get; set; }
 public string Address { get; set; }
 public string Country { get; set; }

 public IEnumerable<EmployeeForCreationDto> Employees { get; set; }
}

After this, let’s create a new mapping rule:

CreateMap<CompanyForUpdateDto, Company>();

Right now, we can modify our controller:

[HttpPut("{id}")]
public IActionResult UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto company)
{
 if(company == null)
 {
 _logger.LogError("CompanyForUpdateDto object sent from client is null.");
 return BadRequest("CompanyForUpdateDto object is null");
 }

 var companyEntity = _repository.Company.GetCompany(id, trackChanges: true);
 if(companyEntity == null)
 {
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 _mapper.Map(company, companyEntity);
 _repository.Save();

 return NoContent();
}

That’s it. You can see that this action is almost the same as the employee

update action.

Let’s test this now:

106

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

We modify the name of the company and attach an employee as well. As

a result, we can see 204, which means that the entity has been updated.

But what about that new employee?

Let’s inspect our query:

You can see that we have created the employee entity in the database.

So, EF Core does that job for us because we track the company entity. As

soon as mapping occurs, EF Core sets the state for the company entity to

modified and for all the employees to added. After we call the Save

method, the Name property is going to be modified and the employee

entity is going to be created in the database.

We are finished with the PUT requests, so let’s continue with PATCH.

107

In the previous chapter, we worked with the PUT request to fully update

our resource. But if we want to update our resource only partially, we

should use PATCH.

The partial update isn’t the only difference between PATCH and PUT. The

request body is different as well. For the Company PATCH request, for

example, we should use [FromBody]JsonPatchDocument<Company>

and not [FromBody]Company as we did with the PUT requests.

Additionally, for the PUT request’s media type, we have used

application/json — but for the PATCH request’s media type, we

should use application/json-patch+json. Even though the first one

would be accepted in ASP.NET Core for the PATCH request, the

recommendation by REST standards is to use the second one.

Let’s see what the PATCH request body looks like:

[
 {
 "op": "replace",
 "path": "/name",
 "value": "new name"
 },
 {
 "op": "remove",
 "path": "/name"
 }
]

The square brackets represent an array of operations. Every operation is

placed between curly brackets. So, in this specific example, we have two

operations: Replace and Remove represented by the op property. The

path property represents the object’s property that we want to modify

and the value property represents a new value.

108

In this specific example, for the first operation, we replace the value of

the name property to a new name. In the second example, we remove the

name property, thus setting its value to default.

There are six different operations for a PATCH request:

OPERATION REQUEST BODY EXPLANATION

Add

 {
 "op": "add",
 "path": "/name",
 "value": "new value"
 }

Assigns a new value to a required
property.

Remove

 {
 "op": "remove",
 "path": "/name"
 }

Sets a default value to a required
property.

Replace

 {
 "op": "replace",
 "path": "/name",
 "value": "new value"
 }

Replaces a value of a required
property to a new value.

Copy

 {
 "op": "copy",
 "from": "/name",
 "path": "/title"
 }

Copies the value from a property in
the “from” part to the property in
the “path” part.

Move

 {
 "op": "move",
 "from": "/name",
 "path": "/title"
 }

Moves the value from a property in
the “from” part to a property in
the “path” part.

Test

 {
 "op": "test",
 "path": "/name",
 "value": "new value"
 }

Tests if a property has a specified
value.

After all this theory, we are ready to dive into the coding part.

Before we start with the controller modification, we have to install two

required libraries:

 The Microsoft.AspNetCore.JsonPatch library to support the usage

of JsonPatchDocument in our controller and

109

 The Microsoft.AspNetCore.Mvc.NewtonsoftJson library to support

request body conversion to a PatchDocument once we send our

request.

As you can see, we are still using the NewtonsoftJson library to support

the PatchDocument conversion in .NET 5. The official statement from

Microsoft is that they are not going to replace it with System.Text.Json:

“The main reason is that this will require a huge investment from us, with

not a very high value-add for majority of our customers.”.

Once the installation is completed, we have to add the NewtonsoftJson

configuration to IServiceCollection:

services.AddControllers(config =>
{
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
}).AddNewtonsoftJson()
 .AddXmlDataContractSerializerFormatters()
 .AddCustomCSVFormatter();

Add it before the Xml and CSV formatters. Now we can continue.

We will require a mapping from the Employee type to the

EmployeeForUpdateDto type. Therefore, we have to create a mapping

rule for that.

If we take a look at the MappingProfile class, we will see that we have

a mapping from the EmployeeForUpdateDto to the Employee type:

CreateMap<EmployeeForUpdateDto, Employee>();

But we need it another way. To do so, we are not going to create an

additional rule; we can just use the ReverseMap method to help us in the

process:

CreateMap<EmployeeForUpdateDto, Employee>().ReverseMap();

110

The ReverseMap method is also going to configure this rule to execute

reverse mapping if we ask for it.

Now, we can modify our controller:

[HttpPatch("{id}")]
public IActionResult PartiallyUpdateEmployeeForCompany(Guid companyId, Guid id,
[FromBody] JsonPatchDocument<EmployeeForUpdateDto> patchDoc)
{
 if(patchDoc == null)
 {
 _logger.LogError("patchDoc object sent from client is null.");
 return BadRequest("patchDoc object is null");
 }

 var company = _repository.Company.GetCompany(companyId, trackChanges: false);
 if (company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeeEntity = _repository.Employee.GetEmployee(companyId, id, trackChanges:
true);
 if (employeeEntity == null)
 {
 _logger.LogInfo($"Employee with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeEntity);

 patchDoc.ApplyTo(employeeToPatch);

 _mapper.Map(employeeToPatch, employeeEntity);

 _repository.Save();

 return NoContent();
}

You can see that our action signature is different from the PUT actions.

We are accepting the JsonPatchDocument from the request body. After

that, we have a familiar code where we check the patchDoc for null value

and if the company and employee exist in the database. Then, we map

from the Employee type to the EmployeeForUpdateDto type; it is

important for us to do that because the patchDoc variable can apply only

to the EmployeeForUpdateDto type. After apply is executed, we map

111

again to the Employee type (from employeeToPatch to

employeeEntity) and save changes in the database.

Now, we can send a couple of requests to test this code:

Let’s first send the replace operation:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

It works; we get the 204 No Content message. Let’s check the same

employee:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

112

And we see the Age property has been changed.

Let’s send a remove operation in a request:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

This works as well. Now, if we check our employee, its age is going to be

set to 0 (the default value for the int type):

Finally, let’s return a value of 28 for the Age property:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

113

Let’s check the employee now:

Excellent.

Everything is working well.

114

While writing API actions, we have a set of rules that we need to check. If

we take a look at the Company class, we can see different data annotation

attributes above our properties:

Those attributes serve the purpose to validate our model object while

creating or updating resources in the database. But we are not making

use of them yet.

In this chapter, we are going to show you how to validate our model

objects and how to return an appropriate response to the client if the

model is not valid. So, we need to validate the input and not the output of

our controller actions. This means that we are going to apply this

validation to the POST, PUT, and PATCH requests, but not for the GET

request.

To validate against validation rules applied by Data Annotation attributes,

we are going to use the concept of ModelState. It is a dictionary

containing the state of the model and model binding validation.

Once we send our request, the rules defined by Data Annotation

attributes are checked. If one of the rules doesn’t check out, the

115

appropriate error message will be returned. We are going to use the

ModelState.IsValid expression to check for those validation rules.

Finally, the response status code, when validation fails, should be 422

Unprocessable Entity. That means that the server understood the

content type of the request and the syntax of the request entity is

correct, but it was unable to process validation rules applied on the entity

inside the request body.

So, with all this in mind, we are ready to implement model validation in

our code.

Let’s send another request for the CreateEmployee action, but this time

with the invalid request body:

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

And we get the 500 Internal Server Error, which is a generic

message when something unhandled happens in our code. But this is not

good. This means that the server made an error, which is not the case. In

116

this case, we, as a consumer, sent a wrong model to the API — thus the

error message should be different.

In order to fix this, let’s modify our EmployeeForCreationDto class

because that’s what we deserialize the request body to:

public class EmployeeForCreationDto
{
 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Age is a required field.")]
 public int Age { get; set; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
 public string Position { get; set; }
}

Once we have the rules applied, we can send the same request again:

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

You can see that our validation rules have been applied and verified as

well. ASP.NET Core validates the model object as soon as the request

gets to the action.

117

But the status code for this response is 400 Bad Request. That is

acceptable, but as we said, there is a status code that better fits this kind

of situation. It is a 422 Unprocessable Entity.

To return 422 instead of 400, the first thing we have to do is to suppress

the BadRequest error when the ModelState is invalid. We are going to

do that by adding this code into the Startup class in the

ConfigureServices method:

services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressModelStateInvalidFilter = true;
});

With this, we are suppressing a default model state validation that is

implemented due to the existence of the [ApiController] attribute in

all API controllers. Before our request reaches the action, it is validated

with the [ApiController] attribute. So this means that we can solve

the same problem differently, by commenting out or removing the

[ApiController] attribute only, without additional code for suppressing

validation. It's all up to you.

Then, we have to modify our action:

[HttpPost]
public IActionResult CreateEmployeeForCompany(Guid companyId, [FromBody]
EmployeeForCreationDto employee)
{
 if(employee == null)
 {
 _logger.LogError("EmployeeForCreationDto object sent from client is null.");
 return BadRequest("EmployeeForCreationDto object is null");
 }

 if(!ModelState.IsValid)
 {
 _logger.LogError("Invalid model state for the EmployeeForCreationDto object");
 return UnprocessableEntity(ModelState);
 }

 … the rest of the code …

 return CreatedAtRoute("GetEmployeeForCompany", new { companyId, id =
employeeToReturn.Id }, employeeToReturn);

118

}

And that is all.

Let’s send our request one more time:

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

Let’s send an additional request to test the max length rule:

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

Excellent. It is working as expected.

119

The same actions can be applied for the CreateCompany action and

CompanyForCreationDto class — and if you check the source code for

this chapter, you will find it implemented.

13.1.1 Validating Int Type

Let’s create one more request with the request body without the age

property:

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

We can clearly see that the age property hasn’t been sent, but in the

response body, we don’t see the error message for the age property next

to other error messages. That is because the age is of type int and if we

don’t send that property, it would be set to a default value, which is 0.

So, on the server-side, validation for the Age property will pass, because

it is not null.

120

To prevent this type of behavior, we have to modify the data annotation

attribute on top of the Age property in the EmployeeForCreationDto

class:

[Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower than
18")]

public int Age { get; set; }

Now, let’s try to send the same request one more time:

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

Now, we have the Age error message in our response.

If we want, we can add the custom error messages in our action:

ModelState.AddModelError(string key, string errorMessage)

With this expression, the additional error message will be included with all

the other messages.

121

The validation for PUT requests shouldn’t be different from POST requests

(except in some cases), but there are still things we have to do to at least

optimize our code.

But let’s go step by step.

First, let’s add Data Annotation Attributes to the EmployeeForUpdateDto

class:

public class EmployeeForUpdateDto
{
 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string Name { get; set; }

 [Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower than
18")]
 public int Age { get; set; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20 characters.")]
 public string Position { get; set; }
}

Once we have done this, we realize we have a small problem. If we

compare this class with the DTO class for creation, we are going to see

that they are the same. Of course, we don’t want to repeat ourselves,

thus we are going to add some modifications.

Let’s create a new class in the DataTransferObjects folder:

public abstract class EmployeeForManipulationDto
{
 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string Name { get; set; }

 [Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower
than 18")]
 public int Age { get; set; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
 public string Position { get; set; }
}

122

We create this class as an abstract class because we want our creation

and update DTO classes to inherit from it:

public class EmployeeForUpdateDto : EmployeeForManipulationDto
{
}

public class EmployeeForCreationDto : EmployeeForManipulationDto
{
}

Now, we can modify the UpdateEmployeeForCompany action by adding

the model validation right after the null check:

if(employee == null)
{
 _logger.LogError("EmployeeForUpdateDto object sent from client is null.");
 return BadRequest("EmployeeForUpdateDto object is null");
}

if (!ModelState.IsValid)
{
 _logger.LogError("Invalid model state for the EmployeeForUpdateDto object");
 return UnprocessableEntity(ModelState);
}

The same process can be applied to the Company DTO classes and create

action. You can find it implemented in the source code for this chapter.

Let’s test this:

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

123

Great.

Everything works well.

The validation for PATCH requests is a bit different from the previous

ones. We are using the ModelState concept again, but this time we have

to place it in the ApplyTo method first:

patchDoc.ApplyTo(employeeToPatch, ModelState);

Right below, we can add our familiar validation logic:

patchDoc.ApplyTo(employeeToPatch, ModelState);

if(!ModelState.IsValid)
{
 _logger.LogError("Invalid model state for the patch document");
 return UnprocessableEntity(ModelState);
}

124

_mapper.Map(employeeToPatch, employeeEntity);

Let’s test this now:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

You can see that it works as it is supposed to.

But, we have a small problem now. What if we try to send a remove

operation, but for the valid path:

125

We can see it passes, but this is not good. If you can remember, we said

that the remove operation will set the value for the included property to

its default value, which is 0. But in the EmployeeForUpdateDto class, we

have a Range attribute which doesn’t allow that value to be below 18. So,

where is the problem?

Let’s illustrate this for you:

As you can see, we are validating the patchDoc which is completely valid

at this moment, but we save employeeEntity to the database. So, we

need some additional validation to prevent an invalid employeeEntity

from being saved to the database:

var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeEntity);

patchDoc.ApplyTo(employeeToPatch, ModelState);

TryValidateModel(employeeToPatch);

if(!ModelState.IsValid)
{
 _logger.LogError("Invalid model state for the patch document");
 return UnprocessableEntity(ModelState);

126

}

We can use the TryValidateModel method to validate the already

patched employeeToPatch instance. This will trigger validation and every

error will make ModelState invalid. After that, we execute a familiar

validation check.

Now, we can test this again:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

And we get 422, which is the expected status code.

127

In this chapter, we are going to convert synchronous code to

asynchronous inside ASP.NET Core. First, we are going to learn a bit

about asynchronous programming and why should we write async code.

Then we are going to use our code from the previous chapters and rewrite

it in an async manner.

We are going to modify the code, step by step, to show you how easy is

to convert synchronous code to asynchronous code. Hopefully, this will

help you understand how asynchronous code works and how to write it

from scratch in your applications.

Async programming is a parallel programming technique that allows the

working process to run separately from the main application thread. As

soon as the work completes, it informs the main thread about the result

whether it was successful or not.

By using async programming, we can avoid performance bottlenecks and

enhance the responsiveness of our application.

How so?

Because we are not sending requests to the server and blocking it while

waiting for the responses anymore (as long as it takes). Now, when we

send a request to the server, the thread pool delegates a thread to that

request. Eventually, that thread finishes its job and returns to the thread

pool freeing itself for the next request. At some point, the data will be

fetched from the database and the result needs to be sent to the

requester. At that time, the thread pool provides another thread to handle

that work. Once the work is done, a thread is going back to the thread

pool.

128

It is very important to understand that if we send a request to an

endpoint and it takes the application three or more seconds to process

that request, we probably won’t be able to execute this request any faster

in async mode. It is going to take the same amount of time as the sync

request.

The only advantage is that in the async mode the thread won’t be blocked

three or more seconds, and thus it will be able to process other requests.

This is what makes our solution scalable.

Here is a visual representation of the asynchronous workflow:

Now that we've cleared that out, we can learn how to implement

asynchronous code in .NET Core.

The async and await keywords play a crucial part in asynchronous

programming. By using those keywords, we can easily write

asynchronous methods without too much effort.

129

For example, if we want to create a method asynchronously, we need to

add the async keyword next to the method’s return type:

async Task<IEnumerable<Company>> GetAllCompaniesAsync()

By using the async keyword, we are enabling the await keyword and

modifying how method results are handled (from synchronous to

asynchronous):

await FindAllAsync();

In asynchronous programming, we have three return types:

 Task<TResult>, for an async method that returns a value.

 Task, for an async method that does not return a value.

 void, which we can use for an event handler.

What does this mean?

Well, we can look at this through synchronous programming glasses. If

our sync method returns an int, then in the async mode it should

return Task<int> — or if the sync method

returns IEnumerable<string>, then the async method should

return Task<IEnumerable<string>>.

But if our sync method returns no value (has a void for the return type),

then our async method should return Task. This means that we can use

the await keyword inside that method, but without the return keyword.

You may wonder now, why not return Task all the time? Well, we should

use void only for the asynchronous event handlers which require

a void return type. Other than that, we should always return a Task.

From C# 7.0 onward, we can specify any other return type if that type

includes a GetAwaiter method.

130

Now, when we have all the information, let’s do some refactoring in our

completely synchronous code.

14.2.1 The IRepositoryBase Interface and the

RepositoryBase Class Explanation

We won’t be changing the mentioned interface and class. That’s because

we want to leave a possibility for the repository user classes to have

either sync or async method execution. Sometimes, the async code could

become slower than the sync one because EF Core’s async commands

take slightly longer to execute (due to extra code for handling the

threading), so leaving this option is always a good choice.

It is general advice to use async code wherever it is possible, but if we

notice that our async code runes slower, we should switch back to the

sync one.

In the Contracts project, we can

find the ICompanyRepository interface with all the synchronous method

signatures which we should change.

So, let’s do that:

public interface ICompanyRepository
{
 Task<IEnumerable<Company>> GetAllCompaniesAsync(bool trackChanges);
 Task<Company> GetCompanyAsync(Guid companyId, bool trackChanges);
 void CreateCompany(Company company);
 Task<IEnumerable<Company>> GetByIdsAsync(IEnumerable<Guid> ids, bool
trackChanges);
 void DeleteCompany(Company company);
}

The Create and Delete method signatures are left synchronous. That’s

because, in these methods, we are not making any changes in the

131

database. All we're doing is changing the state of the entity to Added and

Deleted.

So, in accordance with the interface changes, let’s modify our

CompanyRepository.cs class, which we can find in

the Repository project:

public async Task<IEnumerable<Company>> GetAllCompaniesAsync(bool trackChanges) =>
 await FindAll(trackChanges)
 .OrderBy(c => c.Name)
 .ToListAsync();

public async Task<Company> GetCompanyAsync(Guid companyId, bool trackChanges) =>
 await FindByCondition(c => c.Id.Equals(companyId), trackChanges)
 .SingleOrDefaultAsync();

public async Task<IEnumerable<Company>> GetByIdsAsync(IEnumerable<Guid> ids, bool
trackChanges) =>
 await FindByCondition(x => ids.Contains(x.Id), trackChanges)
 .ToListAsync();

We only have to change these methods in our repository class.

If we inspect the mentioned interface and the class, we will see the Save

method, which just calls the EF Core’s SaveChanges method. We have to

change that as well:

public interface IRepositoryManager
{
 ICompanyRepository Company { get; }
 IEmployeeRepository Employee { get; }
 Task SaveAsync();
}

And class modification:

public Task SaveAsync() => _repositoryContext.SaveChangesAsync();

Because the SaveAsync(), ToListAsync()... methods are awaitable,

we may use the await keyword; thus, our methods need to have

the async keyword and Task as a return type.

132

Using the await keyword is not mandatory, though. Of course, if we don’t

use it, our SaveAsync() method will execute synchronously — and that is

not our goal here.

Finally, we need to modify all of our actions in

the CompaniesController to work asynchronously.

So, let’s first start with the GetCompanies method:

[HttpGet]
public async Task<IActionResult> GetCompanies()
{
 var companies = await _repository.Company.GetAllCompaniesAsync(trackChanges:
false);

 var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

 return Ok(companiesDto);
}

We haven’t changed much in this action. We’ve just changed the return

type and added the async keyword to the method signature. In the

method body, we can now await the GetAllCompaniesAsync() method.

And that is pretty much what we should do in all the actions in our

controller.

So, let’s modify all the other actions.

GetCompany:

[HttpGet("{id}", Name = "CompanyById")]
public async Task<IActionResult> GetCompany(Guid id)
{
 var company = await _repository.Company.GetCompanyAsync(id, trackChanges: false);
 if (company == null)
 {
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 return NotFound();
 }
 else
 {
 var companyDto = _mapper.Map<CompanyDto>(company);
 return Ok(companyDto);
 }

133

}

GetCompanyCollection:

[HttpGet("collection/({ids})", Name = "CompanyCollection")]
public async Task<IActionResult> GetCompanyCollection([ModelBinder(BinderType =
typeof(ArrayModelBinder))]IEnumerable<Guid> ids)
{
 if(ids == null)
 {
 _logger.LogError("Parameter ids is null");
 return BadRequest("Parameter ids is null");
 }

 var companyEntities = await _repository.Company.GetByIdsAsync(ids, trackChanges:
false);

 if(ids.Count() != companyEntities.Count())
 {
 _logger.LogError("Some ids are not valid in a collection");
 return NotFound();
 }

 var companiesToReturn = _mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
 return Ok(companiesToReturn);
}

CreateCompany:

[HttpPost]
public async Task<IActionResult> CreateCompany([FromBody]CompanyForCreationDto
company)
{
 if(company == null)
 {
 _logger.LogError("CompanyForCreationDto object sent from client is null.");
 return BadRequest("CompanyForCreationDto object is null");
 }

 if (!ModelState.IsValid)
 {
 _logger.LogError("Invalid model state for the CompanyForCreationDto object");
 return UnprocessableEntity(ModelState);
 }

 var companyEntity = _mapper.Map<Company>(company);

 _repository.Company.CreateCompany(companyEntity);
 await _repository.SaveAsync();

 var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

 return CreatedAtRoute("CompanyById", new { id = companyToReturn.Id },
companyToReturn);
}

134

CreateCompanyCollection:

[HttpPost("collection")]
public async Task<IActionResult> CreateCompanyCollection([FromBody]
IEnumerable<CompanyForCreationDto> companyCollection)
{
 if(companyCollection == null)
 {
 _logger.LogError("Company collection sent from client is null.");
 return BadRequest("Company collection is null");
 }

 var companyEntities = _mapper.Map<IEnumerable<Company>>(companyCollection);
 foreach (var company in companyEntities)
 {
 _repository.Company.CreateCompany(company);
 }

 await _repository.SaveAsync();

 var companyCollectionToReturn =
 _mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
 var ids = string.Join(",", companyCollectionToReturn.Select(c => c.Id));

 return CreatedAtRoute("CompanyCollection", new { ids },
companyCollectionToReturn);
}

DeleteCompany:

[HttpDelete("{id}")]
public async Task<IActionResult> DeleteCompany(Guid id)
{
 var company = await _repository.Company.GetCompanyAsync(id, trackChanges: false);
 if(company == null)
 {
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 _repository.Company.DeleteCompany(company);
 await _repository.SaveAsync();

 return NoContent();
}

UpdateCompany:

[HttpPut("{id}")]
public async Task<IActionResult> UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto
company)
{
 if(company == null)
 {
 _logger.LogError("CompanyForUpdateDto object sent from client is null.");
 return BadRequest("CompanyForUpdateDto object is null");

135

 }

 if(!ModelState.IsValid)
 {
 _logger.LogError("Invalid model state for the CompanyForUpdateDto object");
 return UnprocessableEntity(ModelState);
 }

 var companyEntity = await _repository.Company.GetCompanyAsync(id, trackChanges:
true);
 if(companyEntity == null)
 {
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 _mapper.Map(company, companyEntity);
 await _repository.SaveAsync();

 return NoContent();
}

Excellent. Now we are talking async.

Of course, we have the Employee entity as well and all of these steps

have to be implemented for the EmployeeRepository class,

IEmployeeRepository interface, and EmployeesController.

You can always refer to the source code for this chapter if you have any

trouble implementing async code for the Employee entity.

After the async implementation in the Employee classes, you can try to

send different requests (from any chapter) to test your async actions. All

of them should work as before, without errors, but this time in an

asynchronous manner.

136

Filters in .NET offer a great way to hook into the MVC action invocation

pipeline. Therefore, we can use filters to extract code that can be reused

and make our actions cleaner and maintainable. Some filters are already

provided by .NET like the authorization filter, and there are the custom

ones that we can create ourselves.

There are different filter types:

 Authorization filters – They run first to determine whether a user

is authorized for the current request.

 Resource filters – They run right after the authorization filters and

are very useful for caching and performance.

 Action filters – They run right before and after action method

execution.

 Exception filters – They are used to handle exceptions before the

response body is populated.

 Result filters – They run before and after the execution of the

action methods result.

In this chapter, we are going to talk about Action filters and how to use

them to create a cleaner and reusable code in our Web API.

To create an Action filter, we need to create a class that inherits either

from the IActionFilter interface, the IAsyncActionFilter interface,

or the ActionFilterAttribute class — which is the implementation of

IActionFilter, IAsyncActionFilter, and a few different interfaces as

well:

137

public abstract class ActionFilterAttribute : Attribute, IActionFilter,

IFilterMetadata, IAsyncActionFilter, IResultFilter, IAsyncResultFilter, IOrderedFilter

To implement the synchronous Action filter that runs before and after

action method execution, we need to implement the OnActionExecuting

and OnActionExecuted methods:

namespace ActionFilters.Filters
{
 public class ActionFilterExample : IActionFilter
 {
 public void OnActionExecuting(ActionExecutingContext context)
 {
 // our code before action executes
 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 // our code after action executes
 }
 }
}

We can do the same thing with an asynchronous filter by inheriting

from IAsyncActionFilter, but we only have one method to implement

— the OnActionExecutionAsync:

namespace ActionFilters.Filters
{
 public class AsyncActionFilterExample : IAsyncActionFilter
 {
 public async Task OnActionExecutionAsync(ActionExecutingContext context,
 ActionExecutionDelegate next)
 {
 // execute any code before the action executes
 var result = await next();
 // execute any code after the action executes
 }
 }
}

Like the other types of filters, the action filter can be added to different

scope levels: Global, Action, and Controller.

138

If we want to use our filter globally, we need to register it inside

the AddControllers() method in the ConfigureServices method:

services.AddControllers(config =>
{
 config.Filters.Add(new GlobalFilterExample());
});

But if we want to use our filter as a service type on the Action or

Controller level, we need to register it in the

same ConfigureServices method, but as a service in the IoC container:

services.AddScoped<ActionFilterExample>();
services.AddScoped<ControllerFilterExample>();

Finally, to use a filter registered on the Action or Controller level, we need

to place it on top of the Controller or Action as a ServiceType:

namespace AspNetCore.Controllers
{
 [ServiceFilter(typeof(ControllerFilterExample))]
 [Route("api/[controller]")]
 [ApiController]
 public class TestController : ControllerBase
 {
 [HttpGet]
 [ServiceFilter(typeof(ActionFilterExample))]
 public IEnumerable<string> Get()
 {
 return new string[] { "example", "data" };
 }

 }
}

The order in which our filters are executed is as follows:

139

Of course, we can change the order of invocation by adding the

Order property to the invocation statement:

namespace AspNetCore.Controllers
{
 [ServiceFilter(typeof(ControllerFilterExample), Order = 2)]
 [Route("api/[controller]")]
 [ApiController]
 public class TestController : ControllerBase
 {
 [HttpGet]
 [ServiceFilter(typeof(ActionFilterExample), Order = 1)]
 public IEnumerable<string> Get()
 {
 return new string[] { "example", "data" };
 }

 }
}

Or something like this on top of the same action:

140

[HttpGet]
[ServiceFilter(typeof(ActionFilterExample), Order = 2)]
[ServiceFilter(typeof(ActionFilterExample2), Order = 1)]
public IEnumerable<string> Get()
{
 return new string[] { "example", "data" };
}

Our actions are clean and readable without try-catch blocks due to

global exception handling, but we can improve them even further.

So, let’s start with the validation code from the POST and PUT actions.

If we take a look at our POST and PUT actions, we can notice the

repeated code in which we validate our Company model:

if(company == null)
{
 _logger.LogError("CompanyForCreationDto object sent from client is null.");
 return BadRequest("CompanyForCreationDto object is null");
}

if (!ModelState.IsValid)
{
 _logger.LogError("Invalid model state for the CompanyForCreationDto object");
 return UnprocessableEntity(ModelState);
}

We can extract that code into a custom Action Filter class, thus making

this code reusable and the action cleaner.

So, let’s do that.

Let’s create a new folder in our solution explorer, and name

it ActionFilters. Then inside that folder, we are going to create a new

class ValidationFilterAttribute:

public class ValidationFilterAttribute : IActionFilter
{
 private readonly ILoggerManager _logger;
 public ValidationFilterAttribute(ILoggerManager logger)
 {

141

 _logger = logger;
 }

 public void OnActionExecuting(ActionExecutingContext context) { }

 public void OnActionExecuted(ActionExecutedContext context){}
}

Now we are going to modify the OnActionExecuting method:

public void OnActionExecuting(ActionExecutingContext context)
{
 var action = context.RouteData.Values["action"];
 var controller = context.RouteData.Values["controller"];

 var param = context.ActionArguments
 .SingleOrDefault(x => x.Value.ToString().Contains("Dto")).Value;
 if (param == null)
 {
 _logger.LogError($"Object sent from client is null. Controller: {controller},
action: {action}");
 context.Result = new BadRequestObjectResult($"Object is null. Controller:
{controller}, action: {action}");
 return;
 }

 if (!context.ModelState.IsValid)
 {
 _logger.LogError($"Invalid model state for the object. Controller:
{controller}, action: {action}");
 context.Result = new UnprocessableEntityObjectResult(context.ModelState);
 }
}

Next, let’s register this action filter in the ConfigureServices method:

services.AddScoped<ValidationFilterAttribute>();

Finally, let’s remove that validation code from our actions and call this

action filter as a service:

[HttpPost]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> CreateCompany([FromBody]CompanyForCreationDto
company)
{
 var companyEntity = _mapper.Map<Company>(company);

 _repository.Company.CreateCompany(companyEntity);
 await _repository.SaveAsync();

 var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

 return CreatedAtRoute("CompanyById", new { id = companyToReturn.Id },
 companyToReturn);

142

}

[HttpPut("{id}")]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto
company)
{
 var companyEntity = await _repository.Company.GetCompanyAsync(id, trackChanges:
 true);
 if(companyEntity == null)
 {
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 return NotFound();
 }

 _mapper.Map(company, companyEntity);
 await _repository.SaveAsync();

 return NoContent();
}

Excellent.

This code is much cleaner and more readable now without the validation

part. Furthermore, the validation part is now reusable for the POST and

PUT actions for both the Company and Employee DTO objects.

If we send a POST request, for example, with the invalid model we will

get the required response:

143

https://localhost:5001/api/companies

We can apply this action filter to the POST and PUT actions in the

EmployeesController the same way we did in the

CompaniesController and test it as well:

144

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

If we take a look at our DeleteCompany and UpdateCompany actions, we

are going to see the code where we fetch the company by id from the

database and check if it exists:

if (company == null)
{
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 return NotFound();
}

That’s something we can extract to the Action Filter class as well, thus

making it reusable in all the actions.

145

Of course, we need to inject our repository into a new ActionFilter class

by using dependency injection.

Having said that, let’s create another Action Filter

class: ValidateCompanyExistsAttribute in the ActionFilters folder

and modify it:

public class ValidateCompanyExistsAttribute : IAsyncActionFilter
{
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;
 public ValidateCompanyExistsAttribute(IRepositoryManager repository,
ILoggerManager logger)
 {
 _repository = repository;
 _logger = logger;
 }

 public async Task OnActionExecutionAsync(ActionExecutingContext context,
ActionExecutionDelegate next)
 {
 var trackChanges = context.HttpContext.Request.Method.Equals("PUT");
 var id = (Guid)context.ActionArguments["id"];
 var company = await _repository.Company.GetCompanyAsync(id, trackChanges);

 if (company == null)
 {
 _logger.LogInfo($"Company with id: {id} doesn't exist in the database.");
 context.Result = new NotFoundResult();
 }
 else
 {
 context.HttpContext.Items.Add("company", company);
 await next();
 }
 }
}

We are using the async version of the action filter because we fetch our

entity in an async manner. Two things to notice here. The first is that we

check a type of request and only if it is a PUT request we set the

trackChanges to true. The second thing is if we find the entity in the

database, we store it in HttpContext because we need that entity in our

action methods and we don’t want to query the database two times (we

would lose more than we gain if we double that action).

Now, let’s register this filter:

146

services.AddScoped<ValidateCompanyExistsAttribute>();

And let’s modify our actions:

[HttpDelete("{id}")]
[ServiceFilter(typeof(ValidateCompanyExistsAttribute))]
public async Task<IActionResult> DeleteCompany(Guid id)
{
 var company = HttpContext.Items["company"] as Company;

 _repository.Company.DeleteCompany(company);
 await _repository.SaveAsync();

 return NoContent();
}

[HttpPut("{id}")]
[ServiceFilter(typeof(ValidationFilterAttribute))]
[ServiceFilter(typeof(ValidateCompanyExistsAttribute))]
public async Task<IActionResult> UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto
company)
{
 var companyEntity = HttpContext.Items["company"] as Company;

 _mapper.Map(company, companyEntity);
 await _repository.SaveAsync();

 return NoContent();
}

Now our actions look great without code repetition.

You can test these actions with the prepared (Delete and Put) requests in

Postman. Of course, the implementation for the EmployeesController

is almost the same (except some differences in a filter implementation).

So, let’s see how to do that:

public class ValidateEmployeeForCompanyExistsAttribute : IAsyncActionFilter
{
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;

 public ValidateEmployeeForCompanyExistsAttribute(IRepositoryManager repository,
ILoggerManager logger)
 {
 _repository = repository;
 _logger = logger;
 }

 public async Task OnActionExecutionAsync(ActionExecutingContext context,
ActionExecutionDelegate next)
 {

147

 var method = context.HttpContext.Request.Method;
 var trackChanges = (method.Equals("PUT") || method.Equals("PATCH")) ? true :
false;

 var companyId = (Guid)context.ActionArguments["companyId"];
 var company = await _repository.Company.GetCompanyAsync(companyId, false);

 if (company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 context.Result = new NotFoundResult();
 return;
 }

 var id = (Guid)context.ActionArguments["id"];
 var employee = await _repository.Employee.GetEmployeeAsync(companyId, id,
trackChanges);

 if(employee == null)
 {
 _logger.LogInfo($"Employee with id: {id} doesn't exist in the database.");
 context.Result = new NotFoundResult();
 }
 else
 {
 context.HttpContext.Items.Add("employee", employee);
 await next();
 }
 }
}

Then the registration part:

services.AddScoped<ValidateEmployeeForCompanyExistsAttribute>();

And finally, the controller modification.

Delete:

[HttpDelete("{id}")]
[ServiceFilter(typeof(ValidateEmployeeForCompanyExistsAttribute))]
public async Task<IActionResult> DeleteEmployeeForCompany(Guid companyId, Guid id)
{
 var employeeForCompany = HttpContext.Items["employee"] as Employee;

 _repository.Employee.DeleteEmployee(employeeForCompany);
 await _repository.SaveAsync();

 return NoContent();
}

Update:

[HttpPut("{id}")]

148

[ServiceFilter(typeof(ValidationFilterAttribute))]
[ServiceFilter(typeof(ValidateEmployeeForCompanyExistsAttribute))]
public async Task<IActionResult> UpdateEmployeeForCompany(Guid companyId, Guid id,
[FromBody] EmployeeForUpdateDto employee)
{
 var employeeEntity = HttpContext.Items["employee"] as Employee;

 _mapper.Map(employee, employeeEntity);
 await _repository.SaveAsync();

 return NoContent();
}

And Patch:

[HttpPatch("{id}")]
[ServiceFilter(typeof(ValidateEmployeeForCompanyExistsAttribute))]
public async Task<IActionResult> PartiallyUpdateEmployeeForCompany(Guid companyId,
Guid id, [FromBody] JsonPatchDocument<EmployeeForUpdateDto> patchDoc)
{
 if(patchDoc == null)
 {
 _logger.LogError("patchDoc object sent from client is null.");
 return BadRequest("patchDoc object is null");
 }

 var employeeEntity = HttpContext.Items["employee"] as Employee;

 var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeEntity);

 patchDoc.ApplyTo(employeeToPatch, ModelState);

 TryValidateModel(employeeToPatch);

 if(!ModelState.IsValid)
 {
 _logger.LogError("Invalid model state for the patch document");
 return UnprocessableEntity(ModelState);
 }

 _mapper.Map(employeeToPatch, employeeEntity);

 await _repository.SaveAsync();

 return NoContent();
}

These changes can be tested as well with prepared requests in our

Postman document.

One last thing.

If we take a look at the Employees and the Companies controller, we will

find the GetEmployeeForCompany action and the GetCompany action. For

149

both actions, we can implement these “ExistsAttribute” filters, but then

those actions must be synchronous. That’s because there will be no async

code left. It is up to you whether you want to implement them or not.

150

We have covered a lot of interesting features while creating our Web API

project, but there are still things to do.

So, in this chapter, we’re going to learn how to implement paging in

ASP.NET Core Web API. It is one of the most important concepts in

building RESTful APIs.

If we inspect the GetEmployeesForCompany action in the

EmployeesController, we can see that we return all the employees for

the single company.

But we don’t want to return a collection of all resources when querying

our API. That can cause performance issues and it’s in no way optimized

for public or private APIs. It can cause massive slowdowns and even

application crashes in severe cases.

Of course, we should learn a little more about Paging before we dive into

code implementation.

Paging refers to getting partial results from an API. Imagine having

millions of results in the database and having your application try to

return all of them at once.

Not only would that be an extremely ineffective way of returning the

results, but it could also possibly have devastating effects on the

application itself or the hardware it runs on. Moreover, every client

has limited memory resources and it needs to restrict the number of

shown results.

Thus, we need a way to return a set number of results to the client in

order to avoid these consequences. Let’s see how we can do that.

151

Mind you, we don’t want to change the base repository logic or implement

any business logic in the controller.

What we want to achieve is something like this:

https://localhost:5001/api/companies/companyId/employees?pa

geNumber=2&pageSize=2. This should return the second set of two

employees we have in our database.

We also want to constrain our API not to return all the employees even if

someone calls

https://localhost:5001/api/companies/companyId/employees.

Let's start with the controller modification by modifying the

GetEmployeesForCompany action:

[HttpGet]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]
EmployeeParameters employeeParameters)
{
 var company = await _repository.Company.GetCompanyAsync(companyId, trackChanges:
false);
 if (company == null)
 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeesFromDb = await _repository.Employee.GetEmployeesAsync(companyId,
employeeParameters, trackChanges: false);

 var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

 return Ok(employeesDto);
}

A few things to take note of here:

 We’re calling the GetEmployeesAsync method from

the EmployeeRepository, which doesn’t exist yet, but we’ll

implement it soon.

152

 We’re using [FromQuery] to point out that we’ll be using query

parameters to define which page and how many employees we are

requesting.

 The EmployeeParameters class is the container for the actual

parameters for the Employee entity.

We also need to actually create the EmployeeParameters class. So, let’s

first create a RequestFeatures folder in the Entities project and then

inside, create the required classes:

public abstract class RequestParameters
{
 const int maxPageSize = 50;
 public int PageNumber { get; set; } = 1;

 private int _pageSize = 10;
 public int PageSize
 {
 get
 {
 return _pageSize;
 }
 set
 {
 _pageSize = (value > maxPageSize) ? maxPageSize : value;
 }
 }
}

public class EmployeeParameters : RequestParameters
{
}

As you can see, we create an abstract class to hold the common

properties for all the entities in our project, and a single

EmployeeParameters class that will hold the specific parameters. It is

empty now, but soon it won’t be.

In the abstract class, we are using the maxPageSize constant to restrict

our API to a maximum of 50 rows per page. We have two public

properties – PageNumber and PageSize. If not set by the caller,

PageNumber will be set to 1, and PageSize to 10.

153

Now we can return to the controller and import a using directive for the

EmployeeParameters class:

using Entities.RequestFeatures;

After that change, let’s implement the most important part — the

repository logic. We need to modify the GetEmployeesAsync method in

the IEmployeeRepository interface and

the EmployeeRepository class.

So, first the interface modification:

public interface IEmployeeRepository
{
 Task<IEnumerable<Employee>> GetEmployeesAsync(Guid companyId, EmployeeParameters
employeeParameters, bool trackChanges);
 Task<Employee> GetEmployeeAsync(Guid companyId, Guid id, bool trackChanges);
 void CreateEmployeeForCompany(Guid companyId, Employee employee);
 void DeleteEmployee(Employee employee);
}

And the repository logic:

public async Task<IEnumerable<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges) =>
 await FindByCondition(e => e.CompanyId.Equals(companyId), trackChanges)
 .OrderBy(e => e.Name)
 .Skip((employeeParameters.PageNumber - 1) * employeeParameters.PageSize)
 .Take(employeeParameters.PageSize)
 .ToListAsync();

Okay, the easiest way to explain this is by example.

Say we need to get the results for the third page of our website, counting

20 as the number of results we want. That would mean we want to skip

the first ((3 – 1) * 20) = 40 results, then take the next 20 and return

them to the caller.

Does that make sense?

Before we continue, we should create additional employees for the

company with the id: C9D4C053-49B6-410C-BC78-2D54A9991870. We

154

are doing this because we have only a small number of employees per

company and we need more of them for our example. You can use a

predefined request in Part16 in Postman, and just change the request

body with the following objects:

{

 "name": "Mihael Worth",

 "age": 30,

 "position": "Marketing expert"

}

{

 "name": "John Spike",

 "age": 30,

 "position": "Marketing expert

II"

}

{

 "name": "Nina Hawk",

 "age": 26,

 "position": "Marketing expert

II"

}

{

 "name": "Mihael Fins",

 "age": 30,

 "position": "Marketing expert"

}

{

 "name": "Martha Grown",

 "age": 35,

 "position": "Marketing expert

II"

}

{

 "name": "Kirk Metha",

 "age": 30,

 "position": "Marketing expert"

}

Now we should have eight employees for this company, and we can try a

request like this:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-

BC78-2D54A9991870/employees?pageNumber=2&pageSize=2

So, we request page two with two employees:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?pageNumber=2&pageSize=2
https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?pageNumber=2&pageSize=2

155

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=2&pageSize=2

If that’s what you got, you’re on the right track.

We can check our result in the database:

And we can see that we have a correct data returned.

Now, what can we do to improve this solution?

156

Since we’re returning just a subset of results to the caller, we might as

well have a PagedList instead of List.

PagedList will inherit from the List class and will add some more to it.

We can also move the skip/take logic to the PagedList since it makes

more sense.

So, let’s first create a new MetaData class in the

Entities/RequestFeatures folder:

public class MetaData
{
 public int CurrentPage { get; set; }
 public int TotalPages { get; set; }
 public int PageSize { get; set; }
 public int TotalCount { get; set; }

 public bool HasPrevious => CurrentPage > 1;
 public bool HasNext => CurrentPage < TotalPages;
}

Then, we are going to implement the PagedList class in the same

folder:

public class PagedList<T> : List<T>
{
 public MetaData MetaData { get; set; }

 public PagedList(List<T> items, int count, int pageNumber, int pageSize)
 {
 MetaData = new MetaData
 {
 TotalCount = count,
 PageSize = pageSize,
 CurrentPage = pageNumber,
 TotalPages = (int)Math.Ceiling(count / (double)pageSize)
 };

 AddRange(items);
 }

 public static PagedList<T> ToPagedList(IEnumerable<T> source, int pageNumber, int
pageSize)
 {
 var count = source.Count();
 var items = source
 .Skip((pageNumber - 1) * pageSize)
 .Take(pageSize).ToList();

157

 return new PagedList<T>(items, count, pageNumber, pageSize);
 }
}

As you can see, we’ve transferred the skip/take logic to the static method

inside of the PagedList class. And in the MetaData class, we’ve added a

few more properties that will come in handy as metadata for our

response.

HasPrevious is true if the CurrentPage is larger than 1, and HasNext is

calculated if the CurrentPage is smaller than the number of total pages.

TotalPages is calculated by dividing the number of items by the page

size and then rounding it to the larger number since a page needs to exist

even if there is only one item on it.

Now that we’ve cleared that up, let’s change our EmployeeRepository

and EmployeesController accordingly.

Let’s start with the interface modification:

Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId, EmployeeParameters
employeeParameters, bool trackChanges);

Then, let’s change the repository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId),
trackChanges)
 .OrderBy(e => e.Name)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
 }

And finally, let’s modify the controller:

public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]
EmployeeParameters employeeParameters)
{
 var company = await _repository.Company.GetCompanyAsync(companyId, trackChanges:
false);
 if (company == null)

158

 {
 _logger.LogInfo($"Company with id: {companyId} doesn't exist in the
database.");
 return NotFound();
 }

 var employeesFromDb = await _repository.Employee.GetEmployeesAsync(companyId,
employeeParameters, trackChanges: false);

 Response.Headers.Add("X-Pagination",
JsonConvert.SerializeObject(employeesFromDb.MetaData));

 var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

 return Ok(employeesDto);
 }

Now, if we send the same request we did earlier, we are going to get the

same result:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=2&pageSize=2

But now we have some additional useful information in the X-Pagination

response header:

159

As you can see, all of our metadata is here. We can use this information

when building any kind of frontend pagination to our benefit. You can play

around with different requests to see how it works in other scenarios.

We could also use this data to generate links to the previous and next

pagination page on the backend, but that is part of the HATEOAS and is

out of the scope of this chapter.

16.4.1 Additional Advice

This solution works great with a small amount of data, but with bigger

tables with millions of rows, we can improve it by modifying the

GetEmployeesAsync method:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId, EmployeeParam
eters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId), trackCha
nges)
 .OrderBy(e => e.Name)
 .Skip((employeeParameters.PageNumber - 1) * employeeParameters.PageSize)
 .Take(employeeParameters.PageSize)
 .ToListAsync();

 var count = await FindByCondition(e => e.CompanyId.Equals(companyId), trackChanges
).CountAsync();

 return new PagedList<Employee>(employees, employeeParameters.PageNumber, employeeP
arameters.PageSize, count);
}

Even though we have an additional call to the database with the

CountAsync method, this solution was tested upon millions of rows and

was much faster than the previous one. Because our table has few rows,

we will continue using the previous solution, but feel free to switch to this

one if you want.

160

In this chapter, we are going to cover filtering in ASP.NET Core Web API.

We’ll learn what filtering is, how it’s different from searching, and how to

implement it in a real-world project.

While not critical as paging, filtering is still an important part of a flexible

REST API, so we need to know how to implement it in our API projects.

Filtering helps us get the exact result set we want instead of all the

results without any criteria.

Filtering is a mechanism to retrieve results by providing some kind of

criterion. We can write many kinds of filters to get results by type of

class property, value range, date range, or anything else.

When implementing filtering, you are always restricted by the predefined

set of options you can set in your request. For example, you can send a

date value to request an employee, but you won’t have much success.

On the front end, filtering is usually implemented as checkboxes, radio

buttons, or dropdowns. This kind of implementation limits you to only

those options that are available to create a valid filter.

Take for example a car-selling website. When filtering the cars you want,

you would ideally want to select:

 Car manufacturer as a category from a list or a dropdown

 Car model from a list or a dropdown

 Is it new or used with radio buttons

 The city where the seller is as a dropdown

 The price of the car is an input field (numeric)

 ….

161

You get the point. So, the request would look something like this:

https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&

state=used&city=washington&price_from=30000&price_to=50000

Or even like this:

https://bestcarswebsite.com/sale/filter?data[manufacturer]=ford&[mod

el]=expedition&[state]=used&[city]=washington&[price_from]=30000&[pr

ice_to]=50000

Now that we know what filtering is, let’s see how it’s different from

searching.

When searching for results, we usually have only one input and that’s the

one you use to search for anything within a website.

So in other words, you send a string to the API and the API is responsible

for using that string to find any results that match it.

On our car website, we would use the search field to find the “Ford

Expedition” car model and we would get all the results that match the car

name “Ford Expedition.” Thus, this search would return every “Ford

Expedition” car available.

We can also improve the search by implementing search terms like

Google does, for example. If the user enters the Ford Expedition without

quotes in the search field, we would return both what’s relevant to Ford

and Expedition. But if the user puts quotes around it, we would search the

entire term “Ford Expedition” in our database.

It makes a better user experience.

Example:

https://bestcarswebsite.com/sale/search?name=ford focus

https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&state=used&city=washington&price_from=30000&price_to=50000
https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&state=used&city=washington&price_from=30000&price_to=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000

162

Using search doesn’t mean we can’t use filters with it. It makes perfect

sense to use filtering and searching together, so we need to take that into

account when writing our source code.

But enough theory.

Let’s implement some filters.

We have the Age property in our Employee class. Let’s say we want to

find out which employees are between the ages of 26 and 29. We also

want to be able to enter just the starting age — and not the ending one —

and vice versa.

We would need a query like this one:

https://localhost:5001/api/companies/companyId/employees?mi

nAge=26&maxAge=29

But, we want to be able to do this too:

https://localhost:5001/api/companies/companyId/employees?mi

nAge=26

Or like this:

https://localhost:5001/api/companies/companyId/employees?ma

xAge=29

Okay, we have a specification. Let’s see how to implement it.

We’ve already implemented paging in our controller, so we have the

necessary infrastructure to extend it with the filtering functionality. We’ve

used the EmployeeParameters class, which inherits from the

RequestParameters class, to define the query parameters for our paging

request.

163

Let’s extend the EmployeeParameters class:

public class EmployeeParameters : RequestParameters
{
 public uint MinAge { get; set; }
 public uint MaxAge { get; set; } = int.MaxValue;

 public bool ValidAgeRange => MaxAge > MinAge;
}

We’ve added two unsigned int properties (to avoid negative year values):

MinAge and MaxAge.

Since the default uint value is 0, we don’t need to explicitly define it; 0 is

okay in this case. For MaxAge, we want to set it to the max int value. If

we don’t get it through the query params, we have something to work

with. It doesn’t matter if someone sets the age to 300 through the

params; it won’t affect the results.

We’ve also added a simple validation property – ValidAgeRange. Its

purpose is to tell us if the max-age is indeed greater then min-age. If it’s

not, we want to let the API user know that he/she is doing something

wrong.

Okay, now that we have our parameters ready, we can modify the

GetEmployeesForCompany action by adding a validation check as a first

statement:

public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]
EmployeeParameters employeeParameters)
{
 if(!employeeParameters.ValidAgeRange)
 return BadRequest("Max age can't be less than min age.");

...the rest of the code...

}

As you can see, there’s not much to it. We’ve added our validation check

and a BadRequest response with a short message to the API user.

That should do it for the controller.

164

Let’s get to the implementation in our EmployeeRepository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId) && (e.Age
>= employeeParameters.MinAge && e.Age <= employeeParameters.MaxAge), trackChanges)
 .OrderBy(e => e.Name)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
}

Actually, at this point, the implementation is rather simple too.

We are using the FindByCondition method to find all the employees

with an Age between the MaxAge and the MinAge.

Let’s try it out.

Let’s send a first request with only a MinAge parameter:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?minAge=32

Next, let’s send one with only a MaxAge parameter:

165

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?maxAge=26

After that, we can combine those two:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?minAge=26&maxAge=30

And finally, we can test the filter with the paging:

166

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=32&maxAge=35

Excellent. The filter is implemented and we can move on to the searching

part.

167

In this chapter, we’re going to tackle the topic of searching in ASP.NET

Core Web API. Searching is one of those functionalities that can make or

break your API, and the level of difficulty when implementing it can vary

greatly depending on your specifications.

If you need to implement a basic searching feature where you are just

trying to search one field in the database, you can easily implement it. On

the other hand, if it’s a multi-column, multi-term search, you would

probably be better off with some of the great search libraries out there

like Lucene.NET which are already optimized and proven.

There is no doubt in our minds that you’ve seen a search field on almost

every website on the internet. It’s easy to find something when we are

familiar with the website structure or when a website is not that large.

But if we want to find the most relevant topic for us, we don’t know what

we’re going to find, or maybe we’re first-time visitors to a large website,

we’re probably going to use a search field.

In our simple project, one use case of a search would be to find an

employee by name.

Let’s see how we can achieve that.

Since we’re going to implement the most basic search in our project, the

implementation won’t be complex at all. We have all we need

infrastructure-wise since we already covered paging and filtering. We’ll

just extend our implementation a bit.

https://lucenenet.apache.org/?fbclid=IwAR2rCcmIrI3SUa-j9oHVgCICfhg2k2NdVcVyvJd1Grd-9laU4QYHIyJuKX8

168

What we want to achieve is something like this:

https://localhost:5001/api/companies/companyId/employees?se

archTerm=Mihael Fins

This should return just one result: Mihael Fins. Of course, the search

needs to work together with filtering and paging, so that’s one of the

things we’ll need to keep in mind too.

Like we did with filtering, we’re going to extend our

EmployeeParameters class first since we’re going to send our search

query as a query parameter:

public class EmployeeParameters : RequestParameters
{
 public uint MinAge { get; set; }
 public uint MaxAge { get; set; } = int.MaxValue;

 public bool ValidAgeRange => MaxAge > MinAge;

 public string SearchTerm { get; set; }
}

Simple as that.

Now we can write queries with searchTerm=”name” in them.

The next thing we need to do is actually implement the search

functionality in our EmployeeRepository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId),
trackChanges)
 .FilterEmployees(employeeParameters.MinAge, employeeParameters.MaxAge)
 .Search(employeeParameters.SearchTerm)
 .OrderBy(e => e.Name)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
}

https://localhost:5001/api/companies/companyId/employees?searchTerm=Mihael
https://localhost:5001/api/companies/companyId/employees?searchTerm=Mihael

169

As you can see, we have made two changes here. The first is modifying

the filter logic and the second is adding the Search method for the

searching functionality. But these methods (FilterEmployees and Search)

are not created yet, so let’s create them.

In the Repository project, we are going to create the new folder

Extensions and inside of that folder the new class

RepositoryEmployeeExtensions:

public static class RepositoryEmployeeExtensions
{
 public static IQueryable<Employee> FilterEmployees(this IQueryable<Employee>
employees, uint minAge, uint maxAge) =>
 employees.Where(e => (e.Age >= minAge && e.Age <= maxAge));

 public static IQueryable<Employee> Search(this IQueryable<Employee> employees,
string searchTerm)
 {
 if (string.IsNullOrWhiteSpace(searchTerm))
 return employees;

 var lowerCaseTerm = searchTerm.Trim().ToLower();

 return employees.Where(e => e.Name.ToLower().Contains(lowerCaseTerm));
 }
}

So, we are just creating our extension methods to update our query until

it is executed in the repository. Now, all we have to do is add a using

directive to the EmployeeRepository class:

using Repository.Extensions;

That’s it for our implementation. As you can see, it isn’t that hard since it

is the most basic search and we already had an infrastructure set.

Let’s send a first request with the value Mihael Fins for the search term:

170

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees?searchTerm=Mihael
Fins

This is working great.

Now, let’s find all employees that contain the letters “ae”:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees?searchTerm=ae

Great. One more request with the paging and filtering:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=32&maxAge=35&searchTerm=MA

And this works as well.

171

That’s it! We’ve successfully implemented and tested our search

functionality.

If we check the Headers tab for each request, we will find valid x-

pagination as well.

172

In this chapter, we’re going to talk about sorting in ASP.NET Core Web

API. Sorting is a commonly used mechanism that every API should

implement. Implementing it in ASP.NET Core is not difficult due to the

flexibility of LINQ and good integration with EF Core.

So, let’s talk a bit about sorting.

Sorting, in this case, refers to ordering our results in a preferred way

using our query string parameters. We are not talking about sorting

algorithms nor are we going into the how’s of implementing a sorting

algorithm.

What we’re interested in, however, is how do we make our API sort our

results the way we want it to.

Let’s say we want our API to sort employees by their name in ascending

order, and then by their age.

To do that, our API call needs to look something like this:

https://localhost:5001/api/companies/companyId/employees?or

derBy=name,age desc

Our API needs to consider all the parameters and sort our results

accordingly. In our case, this means sorting results by their name; then,

if there are employees with the same name, sorting them by the age

property.

So, these are our employees for the IT_Solutions Ltd company:

173

For the sake of demonstrating this example (sorting by name and then by

age), we are going to add one more Jana McLeaf to our database with the

age of 27. You can add whatever you want to test the results:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees

Great, now we have the required data to test our functionality properly.

And of course, like with all other functionalities we have implemented so

far (paging, filtering, and searching), we need to implement this to work

well with everything else. We should be able to get the paginated,

filtered, and sorted data, for example.

174

Let’s see one way to go around implementing this.

As with everything else so far, first, we need to extend our

RequestParameters class to be able to send requests with the orderBy

clause in them:

public class RequestParameters
{
 const int maxPageSize = 50;
 public int PageNumber { get; set; } = 1;

 private int _pageSize = 10;
 public int PageSize
 {
 get
 {
 return _pageSize;
 }
 set
 {
 _pageSize = (value > maxPageSize) ? maxPageSize : value;
 }
 }

 public string OrderBy { get; set; }
}

As you can see, the only thing we’ve added is the OrderBy property and

we added it to the RequestParameters class because we can reuse it for

other entities. We want to sort our results by name, even if it hasn’t been

stated explicitly in the request.

That said, let’s modify the EmployeeParameters class to enable the

default sorting condition for Employee if none was stated:

public class EmployeeParameters : RequestParameters
{
 public EmployeeParameters()
 {
 OrderBy = "name";
 }

 public uint MinAge { get; set; }
 public uint MaxAge { get; set; } = int.MaxValue;

 public bool ValidAgeRange => MaxAge > MinAge;

175

 public string SearchTerm { get; set; }
}

Next, we’re going to dive right into the implementation of our sorting

mechanism, or rather, our ordering mechanism.

One thing to note is that we’ll be using the System.Linq.Dynamic.Core

NuGet package to dynamically create our OrderBy query on the fly. So,

feel free to install it in the Repository project and add a using directive

in the RepositoryEmployeeExtensions class:

using System.Linq.Dynamic.Core;

Now, we can add the new extension method Sort in our

RepositoryEmployeeExtensions class:

public static IQueryable<Employee> Sort(this IQueryable<Employee> employees, string
orderByQueryString)
{
 if (string.IsNullOrWhiteSpace(orderByQueryString))
 return employees.OrderBy(e => e.Name);

 var orderParams = orderByQueryString.Trim().Split(',');
 var propertyInfos = typeof(Employee).GetProperties(BindingFlags.Public |
BindingFlags.Instance);
 var orderQueryBuilder = new StringBuilder();

 foreach (var param in orderParams)
 {
 if (string.IsNullOrWhiteSpace(param))
 continue;

 var propertyFromQueryName = param.Split(" ")[0];
 var objectProperty = propertyInfos.FirstOrDefault(pi =>
pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

 if (objectProperty == null)
 continue;

 var direction = param.EndsWith(" desc") ? "descending" : "ascending";

 orderQueryBuilder.Append($"{objectProperty.Name.ToString()} {direction},
");
 }

 var orderQuery = orderQueryBuilder.ToString().TrimEnd(',', ' ');

 if (string.IsNullOrWhiteSpace(orderQuery))
 return employees.OrderBy(e => e.Name);

 return employees.OrderBy(orderQuery);

176

}

Okay, there are a lot of things going on here, so let’s take it step by step

and see what exactly we've done.

First, let start with the method definition. It has two arguments — one for

the list of employees as IQueryable<Employee> and the other for the

ordering query. If we send a request like this one:

https://localhost:5001/api/companies/companyId/employees?or

derBy=name,age desc, our orderByQueryString will be name,age

desc.

We begin by executing some basic check against the orderByQueryString.

If it is null or empty, we just return the same collection ordered by name.

if (string.IsNullOrWhiteSpace(orderByQueryString))
 return employees.OrderBy(e => e.Name);

Next, we are splitting our query string to get the individual fields:

var orderParams = orderByQueryString.Trim().Split(',');

We’re also using a bit of reflection to prepare the list of PropertyInfo

objects that represent the properties of our Employee class. We need

them to be able to check if the field received through the query string

exists in the Employee class:

var propertyInfos = typeof(Employee).GetProperties(BindingFlags.Public |

BindingFlags.Instance);

That prepared, we can actually run through all the parameters and check

for their existence:

if (string.IsNullOrWhiteSpace(param))
 continue;

var propertyFromQueryName = param.Split(" ")[0];
var objectProperty = propertyInfos.FirstOrDefault(pi =>

pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

177

If we don’t find such a property, we skip the step in the foreach loop and

go to the next parameter in the list:

if (objectProperty == null)
 continue;

If we do find the property, we return it and additionally check if our

parameter contains “desc” at the end of the string. We use that to decide

how we should order our property:

var direction = param.EndsWith(" desc") ? "descending" : "ascending";

We use the StringBuilder to build our query with each loop:

orderQueryBuilder.Append($"{objectProperty.Name.ToString()} {direction}, ");

Now that we’ve looped through all the fields, we are just removing excess

commas and doing one last check to see if our query indeed has

something in it:

var orderQuery = orderQueryBuilder.ToString().TrimEnd(',', ' ');

if (string.IsNullOrWhiteSpace(orderQuery))
 return employees.OrderBy(e => e.Name);

Finally, we can order our query:

return employees.OrderBy(orderQuery);

At this point, the orderQuery variable should contain the “Name

ascending, DateOfBirth descending” string. That means it will order

our results first by Name in ascending order, and then by DateOfBirth in

descending order.

The standard LINQ query for this would be:

employees.OrderBy(e => e.Name).ThenByDescending(o => o.Age);

This is a neat little trick to form a query when you don’t know in advance

how you should sort.

178

Once we have done this, all we have to do is to modify the

GetEmployeesAsync method:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId),
trackChanges)
 .FilterEmployees(employeeParameters.MinAge, employeeParameters.MaxAge)
 .Search(employeeParameters.SearchTerm)
 .Sort(employeeParameters.OrderBy)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
}

And that’s it! We can test this functionality now.

First, let’s try out the query we’ve been using as an example:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-

BC78-2D54A9991870/employees?orderBy=name,age desc

And this is the result:

179

As you can see, the list is sorted by Name ascending. Since we have two

Jana’s, they were sorted by Age descending.

We have prepared additional requests which you can use to test this

functionality with Postman. So, feel free to do it.

Right now, sorting only works with the Employee entity, but what about

the Company? It is obvious that we have to change something in our

implementation if we don’t want to repeat our code while implementing

sorting for the Company entity.

That said, let’s modify the Sort extension method:

180

public static IQueryable<Employee> Sort(this IQueryable<Employee> employees, string
orderByQueryString)
{
 if (string.IsNullOrWhiteSpace(orderByQueryString))
 return employees.OrderBy(e => e.Name);

 var orderQuery = OrderQueryBuilder.CreateOrderQuery<Employee>(orderByQueryString);

 if (string.IsNullOrWhiteSpace(orderQuery))
 return employees.OrderBy(e => e.Name);

 return employees.OrderBy(orderQuery);
 }

So, we are extracting a logic that can be reused in the

CreateOrderQuery<T> method. But of course, we have to create that

method.

Let’s create a Utility folder in the Extensions folder with the new

class OrderQueryBuilder:

Now, let’s modify that class:

public static class OrderQueryBuilder
{
 public static string CreateOrderQuery<T>(string orderByQueryString)
 {
 var orderParams = orderByQueryString.Trim().Split(',');
 var propertyInfos = typeof(T).GetProperties(BindingFlags.Public |
BindingFlags.Instance);
 var orderQueryBuilder = new StringBuilder();

 foreach (var param in orderParams)
 {
 if (string.IsNullOrWhiteSpace(param))
 continue;

 var propertyFromQueryName = param.Split(" ")[0];
 var objectProperty = propertyInfos.FirstOrDefault(pi =>
pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

 if (objectProperty == null)
 continue;

 var direction = param.EndsWith(" desc") ? "descending" : "ascending";

181

 orderQueryBuilder.Append($"{objectProperty.Name.ToString()} {direction},
");
 }

 var orderQuery = orderQueryBuilder.ToString().TrimEnd(',', ' ');

 return orderQuery;
 }
}

And there we go. Not too many changes, but we did a great job here. You

can test this solution with the prepared requests in Postman and you'll get

the same result for sure:

But now, this functionality is reusable.

182

In this chapter, we are going to talk about a neat concept called data

shaping and how to implement it in ASP.NET Core Web API. To achieve

that, we are going to use similar tools to the previous section. Data

shaping is not something that every API needs, but it can be very useful

in some cases.

Let’s start by learning what data shaping is exactly.

Data shaping is a great way to reduce the amount of traffic sent from the

API to the client. It enables the consumer of the API to select

(shape) the data by choosing the fields through the query string.

What this means is something like:

https://localhost:5001/api/companies/companyId/employees?fi

elds=name,age

By giving the consumer a way to select just the fields it needs, we can

potentially reduce the stress on the API. On the other hand, this is

not something every API needs, so we need to think carefully and

decide whether we should implement its implementation because it has a

bit of reflection in it.

And we know for a fact that reflection takes its toll and slows our

application down.

Finally, as always, data shaping should work well together with the

concepts we’ve covered so far – paging, filtering, searching, and sorting.

https://localhost:5001/api/companies/companyId/employees?fields=name,age
https://localhost:5001/api/companies/companyId/employees?fields=name,age

183

First, we are going to implement an employee-specific solution to data

shaping. Then we are going to make it more generic, so it can be used by

any entity or any API.

Let’s get to work.

First things first, we need to extend our RequestParameters class since

we are going to add a new feature to our query string and we want it to

be available for any entity:

public string Fields { get; set; }

We’ve added the Fields property and now we can use fields as a query

string parameter.

Let’s continue by creating a new interface in the Contracts project:

public interface IDataShaper<T>
{
 IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string
fieldsString);
 ExpandoObject ShapeData(T entity, string fieldsString);
}

The IDataShaper defines two methods that should be implemented —

one for the single entity and one for the collection of entities. Both are

named ShapeData, but they have different signatures.

Notice how we use the ExpandoObject as a return type. We need to do

that in order to shape our data the way we want it.

To implement this interface, we are going to create the new folder

DataShaping in the Repository project and the new class DataShaper:

public class DataShaper<T> : IDataShaper<T> where T : class
{
 public PropertyInfo[] Properties { get; set; }

 public DataShaper()
 {

184

 Properties = typeof(T).GetProperties(BindingFlags.Public |
BindingFlags.Instance);
 }

 public IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string
fieldsString)
 {
 var requiredProperties = GetRequiredProperties(fieldsString);

 return FetchData(entities, requiredProperties);
 }

 public ExpandoObject ShapeData(T entity, string fieldsString)
 {
 var requiredProperties = GetRequiredProperties(fieldsString);

 return FetchDataForEntity(entity, requiredProperties);
 }

 private IEnumerable<PropertyInfo> GetRequiredProperties(string fieldsString)
 {
 var requiredProperties = new List<PropertyInfo>();

 if (!string.IsNullOrWhiteSpace(fieldsString))
 {
 var fields = fieldsString.Split(',',
StringSplitOptions.RemoveEmptyEntries);

 foreach (var field in fields)
 {
 var property = Properties
 .FirstOrDefault(pi => pi.Name.Equals(field.Trim(),
StringComparison.InvariantCultureIgnoreCase));

 if (property == null)
 continue;

 requiredProperties.Add(property);
 }
 }
 else
 {
 requiredProperties = Properties.ToList();
 }

 return requiredProperties;
 }

 private IEnumerable<ExpandoObject> FetchData(IEnumerable<T> entities,
IEnumerable<PropertyInfo> requiredProperties)
 {
 var shapedData = new List<ExpandoObject>();

 foreach (var entity in entities)
 {
 var shapedObject = FetchDataForEntity(entity, requiredProperties);
 shapedData.Add(shapedObject);
 }

185

 return shapedData;
 }

 private ExpandoObject FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)
 {
 var shapedObject = new ExpandoObject();

 foreach (var property in requiredProperties)
 {
 var objectPropertyValue = property.GetValue(entity);
 shapedObject.TryAdd(property.Name, objectPropertyValue);
 }

 return shapedObject;
 }
}

There is quite a lot of code here, so let’s break it down.

We have one public property in this class – Properties. It’s an array of

PropertyInfo’s that we’re going to pull out of the input type, whatever it is

— Company or Employee in our case:

public PropertyInfo[] Properties { get; set; }

public DataShaper()
{
 Properties = typeof(T).GetProperties(BindingFlags.Public | BindingFlags.Instance);
}

So, here it is. In the constructor, we get all the properties of an input

class.

Next, we have the implementation of our two public ShapeData methods:

public IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string
fieldsString)
{
 var requiredProperties = GetRequiredProperties(fieldsString);

 return FetchData(entities, requiredProperties);
}

public ExpandoObject ShapeData(T entity, string fieldsString)
{
 var requiredProperties = GetRequiredProperties(fieldsString);

186

 return FetchDataForEntity(entity, requiredProperties);
}

Both methods rely on the GetRequiredProperties method to parse the

input string that contains the fields we want to fetch.

The GetRequiredProperties method does the magic. It parses the

input string and returns just the properties we need to return to the

controller:

private IEnumerable<PropertyInfo> GetRequiredProperties(string fieldsString)
{
 var requiredProperties = new List<PropertyInfo>();

 if (!string.IsNullOrWhiteSpace(fieldsString))
 {
 var fields = fieldsString.Split(',', StringSplitOptions.RemoveEmptyEntries);

 foreach (var field in fields)
 {
 var property = Properties
 .FirstOrDefault(pi => pi.Name.Equals(field.Trim(),
StringComparison.InvariantCultureIgnoreCase));

 if (property == null)
 continue;

 requiredProperties.Add(property);
 }
 }
 else
 {
 requiredProperties = Properties.ToList();
 }

 return requiredProperties;
}

As you can see, there’s nothing special about it. If the fieldsString is

not empty, we split it and check if the fields match the properties in our

entity. If they do, we add them to the list of required properties.

On the other hand, if the fieldsString is empty, all properties are

required.

Now, FetchData and FetchDataForEntity are the private methods to

extract the values from these required properties we’ve prepared.

187

The FetchDataForEntity method does it for a single entity:

private ExpandoObject FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)
{
 var shapedObject = new ExpandoObject();

 foreach (var property in requiredProperties)
 {
 var objectPropertyValue = property.GetValue(entity);
 shapedObject.TryAdd(property.Name, objectPropertyValue);
 }

 return shapedObject;

}

As you can see, we loop through the requiredProperties. Then, using

a bit of reflection, we extract the values and add them to our

ExpandoObject. ExpandoObject implements

IDictionary<string,object>, so we can use the TryAdd method to

add our property using its name as a key and the value as a value for the

dictionary.

This way, we dynamically add just the properties we need to our dynamic

object.

The FetchData method is just an implementation for multiple objects. It

utilizes the FetchDataForEntity method we’ve just implemented:

private IEnumerable<ExpandoObject> FetchData(IEnumerable<T> entities,
IEnumerable<PropertyInfo> requiredProperties)
{
 var shapedData = new List<ExpandoObject>();

 foreach (var entity in entities)
 {
 var shapedObject = FetchDataForEntity(entity, requiredProperties);
 shapedData.Add(shapedObject);
 }

 return shapedData;
}

To continue, let’s register the DataShaper class in the

IServiceCollection in the ConfigureServices method:

188

services.AddScoped <IDataShaper<EmployeeDto>, DataShaper<EmployeeDto>>();

As you can see, during the registration, we provide the type to work with.

Finally, we can modify the EmployeesController by modifying the

constructor:

private readonly IDataShaper<EmployeeDto> _dataShaper;

public EmployeesController(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper, IDataShaper<EmployeeDto> dataShaper)
{
 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 _dataShaper = dataShaper;
}

We are injecting it inside the controller because we don’t have a service

layer in this app. We could have created it, but it would be an overhead

for the app this size. But for bigger apps, we recommend creating a

service layer and transferring all the mappings and data shaping logic

inside it.

And the return statement of the GetEmployeesForCompany actions:

return Ok(_dataShaper.ShapeData(employeesDto, employeeParameters.Fields));

Now, we can test our solution:

189

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A&orderBy=name
desc&fields=name,age

Excellent. Everything is working like a charm.

Let’s send the same request one more time, but this time with the

different accept header (text/xml):

190

As you can see, it works — but it looks pretty ugly and unreadable. But

that’s how the XmlDataContractSerializerOutputFormatter

serializes our ExpandoObject by default.

We can fix that, but the logic is out of the scope of this book. Of course,

we have implemented the solution in our source code. So, if you want,

you can use it in your project.

All you have to do is to create the Entity class and copy the content

from our Entity class that resides in the Entities/Models folder.

After that, just modify the IDataShaper interface and the DataShaper

class by using the Entity type instead of the ExpandoObject type.

Again, you can check our implementation if you have any problems.

After all those changes, once we send the same request, we are going to

see a much better result:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A&orderBy=name
desc&fields=name,age

191

If XML serialization is not important to you, you can keep using

ExpandoObject — but if you want a nicely formatted XML response, this

is the way to go.

As you can see, data shaping is an exciting and neat little feature that can

really make our APIs flexible and reduce our network traffic. If we have a

high-volume traffic API, data shaping should work just fine. On the other

hand, it’s not a feature that we should use lightly because it utilizes

reflection and dynamic typing to get things done.

As with all other functionalities, we need to be careful when and if we

should implement data shaping. Performance tests might come in handy

even if we do implement it.

192

In this section, we are going to talk about one of the most important

concepts in building RESTful APIs — HATEOAS and learn how to

implement HATEOAS in ASP.NET Core Web API. This part relies heavily on

the concepts we've implemented so far in paging, filtering, searching,

sorting, and especially data shaping and builds upon the foundations

we've put down in these parts.

HATEOAS (Hypermedia as the Engine of Application State) is a very

important REST constraint. Without it, a REST API cannot be considered

RESTful and many of the benefits we get by implementing a REST

architecture are unavailable.

Hypermedia refers to any kind of content that contains links to media

types such as documents, images, videos, etc.

REST architecture allows us to generate hypermedia links in our

responses dynamically and thus make navigation much easier. To put this

into perspective, think about a website that uses hyperlinks to help you

navigate to different parts of it. You can achieve the same effect with

HATEOAS in your REST API.

Imagine a website that has a home page and you land on it, but there are

no links anywhere. You need to scrape the website or find some other

way to navigate it to get to the content you want. We're not saying that

the website is the same as a REST API, but you get the point.

The power of being able to explore an API on your own can be very

useful.

Let's see how that works.

193

21.1.1 Typical Response with HATEOAS Implemented

Once we implement HATEOAS in our API, we are going to have this type

of response:

As you can see, we got the list of our employees and for each employee

all the actions we can perform on them. And so on...

So, it's a nice way to make an API self-discoverable and evolvable.

21.1.2 What is a Link?

According to RFC5988, a link is "a typed connection between two

resources that are identified by Internationalised Resource Identifiers

(IRIs)". Simply put, we use links to traverse the internet or rather the

resources on the internet.

Our responses contain an array of links, which consist of a few properties

according to the RFC:

 href - represents a target URI.

 rel - represents a link relation type, which means it describes how

the current context is related to the target resource.

 method - we need an HTTP method to know how to distinguish the

same target URIs.

https://tools.ietf.org/html/rfc5988
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987

194

21.1.3 Pros/Cons of Implementing HATEOAS

So, what are all the benefits we can expect when implementing

HATEOAS?

HATEOAS is not trivial to implement, but the rewards we reap are worth

it. Here are the things we can expect to get when we implement

HATEOAS:

 API becomes self-discoverable and explorable.

 A client can use the links to implement its logic, it becomes much

easier, and any changes that happen in the API structure are

directly reflected onto the client.

 The server drives the application state and URL structure and not

vice versa.

 The link relations can be used to point to developer documentation.

 Versioning through hyperlinks becomes easier.

 Reduced invalid state transaction calls.

 API is evolvable without breaking all the clients.

We can do so much with HATEOAS. But since it's not easy to implement

all these features, we should keep in mind the scope of our API and if we

need all this. There is a great difference between a high volume public API

and some internal API that is needed to communicate between parts of

the same system.

That is more than enough theory for now. Let's get to work and see what

the concrete implementation of HATEOAS looks like.

Let’s begin with the concept we know so far, and that’s the link. In the

Entities project, we are going to create the LinkModels folder and

inside a new Link class:

195

public class Link
{
 public string Href { get; set; }
 public string Rel { get; set; }
 public string Method { get; set; }

 public Link()
 { }

 public Link(string href, string rel, string method)
 {
 Href = href;
 Rel = rel;
 Method = method;
 }
}

Note that we have an empty constructor, too. We'll need that for XML

serialization purposes, so keep it that way.

Next, we need to create a class that will contain all of our links —

LinkResourceBase:

public class LinkResourceBase
{
 public LinkResourceBase()
 {}

 public List<Link> Links { get; set; } = new List<Link>();
}

And finally, since our response needs to describe the root of the

controller, we need a wrapper for our links:

public class LinkCollectionWrapper<T> : LinkResourceBase
{
 public List<T> Value { get; set; } = new List<T>();

 public LinkCollectionWrapper()
 {}

 public LinkCollectionWrapper(List<T> value)
 {
 Value = value;
 }
}

196

This class might not make too much sense right now, but stay with us and

it will become clear later down the road. For now, let's just assume we

wrapped our links in another class for response representation purposes.

Since our response will contain links too, we need to extend the XML

serialization rules so that our XML response returns the properly

formatted links. Without this, we would get something like:

<Links>System.Collections.Generic.List`1[Entites.Models.Lin

k]<Links>. So, in the Entities/Models/Entity class, we need to

extend the WriteLinksToXml method to support links:

private void WriteLinksToXml(string key, object value, XmlWriter writer)
{
 writer.WriteStartElement(key);

 if (value.GetType() == typeof(List<Link>))
 {
 foreach (var val in value as List<Link>)
 {
 writer.WriteStartElement(nameof(Link));
 WriteLinksToXml(nameof(val.Href), val.Href, writer);
 WriteLinksToXml(nameof(val.Method), val.Method, writer);
 WriteLinksToXml(nameof(val.Rel), val.Rel, writer);
 writer.WriteEndElement();
 }
 }
 else
 {
 writer.WriteString(value.ToString());
 }

 writer.WriteEndElement();
}

So, we check if the type is List<Link>. If it is, we iterate through all the

links and call the method recursively for each of the properties: href,

method, and rel.

That's all we need for now. We have a solid foundation to implement

HATEOAS in our controllers.

197

When we generate links, HATEOAS strongly relies on having the ids

available to construct the links for the response. Data shaping, on the

other hand, enables us to return only the fields we want. So, if we want

only the name and age fields, the id field won’t be added. To solve that,

we have to apply some changes.

The first thing we are going to do is to add a ShapedEntity class in the

Entities/Models folder:

public class ShapedEntity
{
 public ShapedEntity()
 {
 Entity = new Entity();
 }

 public Guid Id { get; set; }
 public Entity Entity { get; set; }
}

With this class, we expose the Entity and the Id property as well.

Now, we have to modify the IDataShaper interface and the DataShaper

class by replacing all Entity usage with ShapedEntity.

In addition to that, we need to extend the FetchDataForEntity method

in the DataShaper class to get the id separately:

private ShapedEntity FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)
{
 var shapedObject = new ShapedEntity();

 foreach (var property in requiredProperties)
 {
 var objectPropertyValue = property.GetValue(entity);
 shapedObject.Entity.TryAdd(property.Name, objectPropertyValue);
 }

 var objectProperty = entity.GetType().GetProperty("Id");
 shapedObject.Id = (Guid)objectProperty.GetValue(entity);

 return shapedObject;
}

198

Finally, let’s add the LinkResponse class in the LinkModels folder; that

will help us with the response once we start with the HATEOAS

implementation:

public class LinkResponse
{
 public bool HasLinks { get; set; }

 public List<Entity> ShapedEntities { get; set; }

 public LinkCollectionWrapper<Entity> LinkedEntities { get; set; }

 public LinkResponse()
 {
 LinkedEntities = new LinkCollectionWrapper<Entity>();
 ShapedEntities = new List<Entity>();
 }
}

With this class, we are going to know whether our response has links. If it

does, we are going to use the LinkedEntities property. Otherwise, we

are going to use the ShapedEntities property.

What we want to do is to enable links in our response only if it is explicitly

asked for. To do that, we are going to introduce custom media types.

Before we start, let’s see how we can create a custom media type. A

custom media type should look something like this:

application/vnd.codemaze.hateoas+json. To compare it to the

typical json media type which we use by default: application/json.

So let’s break down the different parts of a custom media type:

 vnd – vendor prefix; it’s always there.

 codemaze – vendor identifier; we’ve chosen codemaze, because

why not?

 hateoas – media type name.

199

 json – suffix; we can use it to describe if we want json or an XML

response, for example.

Now, let’s implement that in our application.

21.4.1 Registering Custom Media Types

First, we want to register our new custom media types in the middleware.

Otherwise, we’ll just get a 406 Not Acceptable message.

Let’s add a new extension method to our ServiceExtensions:

public static void AddCustomMediaTypes(this IServiceCollection services)
{
 services.Configure<MvcOptions>(config =>
 {
 var newtonsoftJsonOutputFormatter = config.OutputFormatters
 .OfType<NewtonsoftJsonOutputFormatter>()?.FirstOrDefault();

 if (newtonsoftJsonOutputFormatter != null)
 {
 newtonsoftJsonOutputFormatter
 .SupportedMediaTypes
 .Add("application/vnd.codemaze.hateoas+json");
 }

 var xmlOutputFormatter = config.OutputFormatters
.OfType<XmlDataContractSerializerOutputFormatter>()?.FirstOrDefault();

 if (xmlOutputFormatter != null)
 {
 xmlOutputFormatter
 .SupportedMediaTypes
 .Add("application/vnd.codemaze.hateoas+xml");
 }
 });
}

We are registering two new custom media types for the JSON and XML

output formatters. This ensures we don’t get a 406 Not Acceptable

response.

One more thing. Due to the PATCH implementation, we have to use the

NewtonsoftJson library. But if you don’t have PATCH in your project, you

can use System.Text.Json instead (default one). Then in this code,

instead of NewtonsoftJsonOutputFormatter, you can use

SystemTextJsonOutputFormatter.

200

Add that to the Startup.cs class in the ConfigureServices method,

just after the AddControllers method:

services.AddCustomMediaTypes();

Excellent. The registration process is done.

21.4.2 Implementing a Media Type Validation Filter

Now, since we’ve implemented custom media types, we want our Accept

header to be present in our requests so we can detect when the user

requested the HATEOAS-enriched response.

To do that, we’ll implement an ActionFilter which will validate our Accept

header and media types:

public class ValidateMediaTypeAttribute : IActionFilter
{
 public void OnActionExecuting(ActionExecutingContext context)
 {
 var acceptHeaderPresent =
context.HttpContext.Request.Headers.ContainsKey("Accept");

 if (!acceptHeaderPresent)
 {
 context.Result = new BadRequestObjectResult($"Accept header is missing.");
 return;
 }

 var mediaType =
context.HttpContext.Request.Headers["Accept"].FirstOrDefault();

 if (!MediaTypeHeaderValue.TryParse(mediaType, out MediaTypeHeaderValue
outMediaType))
 {
 context.Result = new BadRequestObjectResult($"Media type not present.
Please add Accept header with the required media type.");
 return;
 }

 context.HttpContext.Items.Add("AcceptHeaderMediaType", outMediaType);
 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 }
}

201

We check for the existence of the Accept header first. If it’s not present,

we return BadRequest. If it is, we parse the media type — and if there is

no valid media type present, we return BadRequest.

Once we’ve passed the validation checks, we pass the parsed media type

to the HttpContext of the controller.

Now, we have to register the filter in the ConfigureServices method:

services.AddScoped<ValidateMediaTypeAttribute>();

And to decorate the GetEmployeesForCompany action:

[HttpGet]
[ServiceFilter(typeof(ValidateMediaTypeAttribute))]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]

EmployeeParameters employeeParameters)

Great job.

Finally, we can work on the HATEOAS implementation.

We are going to start by creating a new Utility folder in the main

project and the EmployeeLinks class in it. Let’s start by adding the

required dependencies inside the class:

public class EmployeeLinks
{
 private readonly LinkGenerator _linkGenerator;
 private readonly IDataShaper<EmployeeDto> _dataShaper;

 public EmployeeLinks(LinkGenerator linkGenerator, IDataShaper<EmployeeDto>
dataShaper)
 {
 _linkGenerator = linkGenerator;
 _dataShaper = dataShaper;
 }

}

202

We are going to use LinkGenerator to generate links for our responses

and IDataShaper to shape our data. As you can see, the shaping logic is

now extracted from the controller.

After dependencies, we are going to add the first method:

public LinkResponse TryGenerateLinks(IEnumerable<EmployeeDto> employeesDto, string
fields, Guid companyId, HttpContext httpContext)
{
 var shapedEmployees = ShapeData(employeesDto, fields);

 if (ShouldGenerateLinks(httpContext))
 return ReturnLinkdedEmployees(employeesDto, fields, companyId, httpContext,
shapedEmployees);

 return ReturnShapedEmployees(shapedEmployees);
}

So, our method accepts four parameters. The employeeDto collection,

the fields that are going to be used to shape the previous collection,

companyId because routes to the employee resources contain the Id from

the company, and httpContext which holds information about media

types.

The first thing we do is shape our collection. Then if the httpContext

contains the required media type, we add links to the response. On the

other hand, we just return our shaped data.

Of course, we have to add those not implemented methods:

private List<Entity> ShapeData(IEnumerable<EmployeeDto> employeesDto, string fields)
=>
 _dataShaper.ShapeData(employeesDto, fields)
 .Select(e => e.Entity)
 .ToList();

The ShapeData method executes data shaping and extracts only the

entity part without the Id property.

Let’s add two additional methods:

private bool ShouldGenerateLinks(HttpContext httpContext)
{
 var mediaType = (MediaTypeHeaderValue)httpContext.Items["AcceptHeaderMediaType"];

203

 return mediaType.SubTypeWithoutSuffix.EndsWith("hateoas",
StringComparison.InvariantCultureIgnoreCase);
}

private LinkResponse ReturnShapedEmployees(List<Entity> shapedEmployees) => new

LinkResponse { ShapedEntities = shapedEmployees };

In the ShouldGenerateLinks method, we extract the media type from

the httpContext. If that media type ends with hateoas, the method

returns true; otherwise, it returns false. ReturnShapedEmployees just

returns a new LinkResponse with the ShapedEntities property

populated. By default, the HasLinks property is false.

After these methods, we have to add the ReturnLinkedEmployees

method as well:

private LinkResponse ReturnLinkdedEmployees(IEnumerable<EmployeeDto> employeesDto,
string fields, Guid companyId, HttpContext httpContext, List<Entity> shapedEmployees)
{
 var employeeDtoList = employeesDto.ToList();

 for (var index = 0; index < employeeDtoList.Count(); index++)
 {
 var employeeLinks = CreateLinksForEmployee(httpContext, companyId,
employeeDtoList[index].Id, fields);
 shapedEmployees[index].Add("Links", employeeLinks);
 }

 var employeeCollection = new LinkCollectionWrapper<Entity>(shapedEmployees);
 var linkedEmployees = CreateLinksForEmployees(httpContext, employeeCollection);

 return new LinkResponse { HasLinks = true, LinkedEntities = linkedEmployees };
}

As you can see, we iterate through each employee and create links for it

by calling the CreateLinksForEmployee method. Then, we just add it to

the shapedEmployees collection. After that, we wrap the collection and

create links that are important for the entire collection by calling the

CreateLinksForEmployees method.

Finally, we have to add those two new methods that create links:

private List<Link> CreateLinksForEmployee(HttpContext httpContext, Guid companyId,
Guid id, string fields = "")

204

{
 var links = new List<Link>
 {
 new Link(_linkGenerator.GetUriByAction(httpContext, "GetEmployeeForCompany",
values: new { companyId, id, fields }),
 "self",
 "GET"),
 new Link(_linkGenerator.GetUriByAction(httpContext,
"DeleteEmployeeForCompany", values: new { companyId, id }),
 "delete_employee",
 "DELETE"),
 new Link(_linkGenerator.GetUriByAction(httpContext,
"UpdateEmployeeForCompany", values: new { companyId, id }),
 "update_employee",
 "PUT"),
 new Link(_linkGenerator.GetUriByAction(httpContext,
"PartiallyUpdateEmployeeForCompany", values: new { companyId, id }),
 "partially_update_employee",
 "PATCH")
 };

 return links;
}

private LinkCollectionWrapper<Entity> CreateLinksForEmployees(HttpContext httpContext,
LinkCollectionWrapper<Entity> employeesWrapper)
{
 employeesWrapper.Links.Add(new Link(_linkGenerator.GetUriByAction(httpContext,
"GetEmployeesForCompany", values: new { }),
 "self",
 "GET"));

 return employeesWrapper;
}

There are a few things to note here.

We need to consider the fields while creating the links since we might be

using it in our requests. We are creating the links by using the

LinkGenerator‘s GetUriByAction method — which accepts

HttpContext, the name of the action, and the values that need to be

used to make the URL valid. In the case of the EmployeesController, we

send the company id, employee id, and fields.

And that is it regarding this class.

Now, we have to register this class in the ConfigureServices method:

services.AddScoped<EmployeeLinks>();

205

Once registered, we can inject it in the EmployeesController:

private readonly IRepositoryManager _repository;
private readonly ILoggerManager _logger;
private readonly IMapper _mapper;
private readonly EmployeeLinks _employeeLinks;

public EmployeesController(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper, EmployeeLinks employeeLinks)
{
 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 _employeeLinks = employeeLinks;
}

As you can see, we don’t have the DataShaper injected anymore.

All we have left to do is to slightly modify the GetEmployeesForCompany

action:

[HttpGet]
[ServiceFilter(typeof(ValidateMediaTypeAttribute))]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]
EmployeeParameters employeeParameters)
{
 //The first part of the action omitted for the clarity

 var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

 var links = _employeeLinks.TryGenerateLinks(employeesDto,
employeeParameters.Fields, companyId, HttpContext);

 return links.HasLinks ? Ok(links.LinkedEntities) : Ok(links.ShapedEntities);
}

Excellent. We can test this now:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A&orderBy=name
desc&fields=name,age

206

You can test this with the xml media type as well (we have prepared the

request in Postman for you).

207

In one of the previous chapters (Method Safety and Method

Idempotency), we talked about different HTTP requests. Until now, we

have been working with all request types except OPTIONS and HEAD. So,

let’s cover them as well.

The Options request can be used to request information on the

communication options available upon a certain URI. It allows consumers

to determine the options or different requirements associated with a

resource. Additionally, it allows us to check the capabilities of a server

without forcing action to retrieve a resource.

Basically, Options should inform us whether we can Get a resource or

execute any other action (POST, PUT, or DELETE). All of the options

should be returned in the Allow header of the response as a comma-

separated list of methods.

Let’s see how we can implement the Options request in our example.

We are going to implement this request in the CompaniesController —

so, let’s open it and add a new action:

[HttpOptions]
public IActionResult GetCompaniesOptions()
{
 Response.Headers.Add("Allow", "GET, OPTIONS, POST");

 return Ok();
}

We have to decorate our action with the HttpOptions attribute. As we

said, the available options should be returned in the Allow response

header, and that is exactly what we are doing here. The URI for this

208

action is /api/companies, so we state which actions can be executed for

that certain URI. Finally, the Options request should return the 200 OK

status code. We have to understand that the response, if it is empty,

must include the content-length field with the value of zero. We don’t

have to add it by ourselves because ASP.NET Core takes care of that for

us.

Let’s try this:

https://localhost:5001/api/companies

As you can see, we are getting a 200 OK response. Let’s inspect the

Headers tab:

Everything works as expected.

Let’s move on.

209

Head is identical to Get but without a response body. This type of request

could be used to obtain information about validity, accessibility, and

recent modifications of the resource.

Let’s open the EmployeesController, because that’s where we are

going to implement this type of request. As we said, the Head request

must return the same response as the Get request — just without the

response body. That means it should include the paging information in the

response as well.

Now, you may think that we have to write a completely new action and

also repeat all the code inside, but that is not the case. All we have to do

is add the HttpHead attribute below HttpGet:

[HttpGet]
[HttpHead]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]

EmployeeParameters employeeParameters)

We can test this now:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=2&pageSize=2

As you can see, we receive a 200 OK status code with the empty body.

Let’s check the Headers part:

210

You can see the x-pagination link included in the Headers part of the

response. Additionally, all the parts of the x-pagination link are populated

— which means that our code was successfully executed, but the

response body hasn’t been included.

Excellent.

We now have support for the Http OPTIONS and HEAD requests.

211

In this section, we are going to create a starting point for the consumers

of our API. This starting point is also known as the Root Document. The

Root Document is the place where consumers can learn how to interact

with the rest of the API.

This document should be created at the api root, so let’s start by creating

a new controller:

[Route("api")]
[ApiController]
public class RootController : ControllerBase
{
}

We are going to generate links towards the API actions. Therefore, we

have to inject LinkGenerator:

[Route("api")]
[ApiController]
public class RootController : ControllerBase
{
 private readonly LinkGenerator _linkGenerator;

 public RootController(LinkGenerator linkGenerator)
 {
 _linkGenerator = linkGenerator;
 }
}

In this controller, we only need a single action, GetRoot, which will be

executed with the GET request on the /api URI.

There are several links that we are going to create in this action. The link

to the document itself and links to actions available on the URIs at the

root level (actions from the Companies controller). We are not creating

links to employees, because they are children of the company — and in

our API if we want to fetch employees, we have to fetch the company

first.

212

If we inspect our CompaniesController, we can see that GetCompanies

and CreateCompany are the only actions on the root URI level

(api/companies). Therefore, we are going to create links only to them.

Before we start with the GetRoot action, let’s add a name for the

CreateCompany and GetCompanies actions in the

CompaniesController:

[HttpGet(Name = "GetCompanies")]
public async Task<IActionResult> GetCompanies()

[HttpPost(Name = "CreateCompany")]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> CreateCompany([FromBody]CompanyForCreationDto
company)

We are going to use the Link class to generate links:

public class Link
{
 public string Href { get; set; }
 public string Rel { get; set; }
 public string Method { get; set; }
 …
}

This class contains all the required properties to describe our actions while

creating links in the GetRoot action. The Href property defines the URI

to the action, the Rel property defines the identification of the action

type, and the Method property defines which HTTP method should be

used for that action.

Now, we can create the GetRoot action:

[HttpGet(Name = "GetRoot")]
public IActionResult GetRoot([FromHeader(Name = "Accept")] string mediaType)
{
 if(mediaType.Contains("application/vnd.codemaze.apiroot"))
 {
 var list = new List<Link>
 {
 new Link
 {
 Href = _linkGenerator.GetUriByName(HttpContext, nameof(GetRoot), new
{}),
 Rel = "self",
 Method = "GET"

213

 },
 new Link
 {
 Href = _linkGenerator.GetUriByName(HttpContext, "GetCompanies", new
{}),
 Rel = "companies",
 Method = "GET"
 },
 new Link
 {
 Href = _linkGenerator.GetUriByName(HttpContext, "CreateCompany", new
{}),
 Rel = "create_company",
 Method = "POST"
 }
 };

 return Ok(list);
 }

 return NoContent();
}

As you can see, we generate links only if a custom media type is provided

from the Accept header. Otherwise, we return NoContent(). To generate

links, we use the GetUriByName method from the LinkGenerator class.

That said, we have to register our custom media types for the json and

xml formats. To do that, we are going to extend the

AddCustomMediaTypes extension method:

public static void AddCustomMediaTypes(this IServiceCollection services)
{
 services.Configure<MvcOptions>(config =>
 {
 var newtonsoftJsonOutputFormatter = config.OutputFormatters
 .OfType<NewtonsoftJsonOutputFormatter>()?.FirstOrDefault();

 if (newtonsoftJsonOutputFormatter != null)
 {
 newtonsoftJsonOutputFormatter
 .SupportedMediaTypes.Add("application/vnd.codemaze.hateoas+json");
 newtonsoftJsonOutputFormatter
 .SupportedMediaTypes.Add("application/vnd.codemaze.apiroot+json");
 }

 var xmlOutputFormatter = config.OutputFormatters
 .OfType<XmlDataContractSerializerOutputFormatter>()?.FirstOrDefault();

 if (xmlOutputFormatter != null)
 {
 xmlOutputFormatter
 .SupportedMediaTypes.Add("application/vnd.codemaze.hateoas+xml");

214

 xmlOutputFormatter
 .SupportedMediaTypes.Add("application/vnd.codemaze.apiroot+xml");
 }
 });
}

We can now inspect our result:

https://localhost:5001/api

This works great.

Let’s test what is going to happen if we don’t provide the custom media

type:

https://localhost:5001/api

215

Well, we get the 204 No Content message as expected.

Of course, you can test the xml request as well:

https://localhost:5001/api

216

As our project grows, so does our knowledge; therefore, we have a better

understanding of how to improve our system. Moreover, requirements

change over time — thus, our API has to change as well.

When we implement some breaking changes, we want to ensure that we

don’t do anything that will cause our API consumers to change their code.

Those breaking changes could be:

 Renaming fields, properties, or resource URIs.

 Changes in the payload structure.

 Modifying response codes or HTTP Verbs.

 Redesigning our API endpoints.

If we have to implement some of these changes in the already working

API, the best way is to apply versioning to prevent breaking our API for

the existing API consumers.

There are different ways to achieve API versioning and there is no

guidance that favors one way over another. So, we are going to show you

different ways to version an API, and you can choose which one suits you

best.

In order to start, we have to install the

Microsoft.AspNetCore.Mvc.Versioning library in the main project:

217

This library is going to help us a lot in versioning our API.

After the installation, we have to add the versioning service in the service

collection and to configure it. So, let’s create a new extension method in

the ServiceExtensions class:

public static void ConfigureVersioning(this IServiceCollection services)
{
 services.AddApiVersioning(opt =>
 {
 opt.ReportApiVersions = true;
 opt.AssumeDefaultVersionWhenUnspecified = true;
 opt.DefaultApiVersion = new ApiVersion(1, 0);
 });
}

With the AddApiVersioning method, we are adding service API

versioning to the service collection. We are also using a couple of

properties to initially configure versioning:

 ReportApiVersions adds the API version to the response header.

 AssumeDefaultVersionWhenUnspecified does exactly that. It

specifies the default API version if the client doesn’t send one.

 DefaultApiVersion sets the default version count.

After that, we are going to use this extension in the ConfigureServices

method:

services.ConfigureVersioning();

API versioning is installed and configured, and we can move on.

218

Before we continue, let’s create another controller:

CompaniesV2Controller (for example’s sake), which will represent a

new version of our existing one. It is going to have just one Get action:

[ApiVersion("2.0")]
[Route("api/companies")]
[ApiController]
public class CompaniesV2Controller : ControllerBase
{
 private readonly IRepositoryManager _repository;

 public CompaniesV2Controller(IRepositoryManager repository)
 {
 _repository = repository;
 }

 [HttpGet]
 public async Task<IActionResult> GetCompanies()
 {
 var companies = await _repository.Company.GetAllCompaniesAsync(trackChanges:
false);

 return Ok(companies);
 }
}

By using the [ApiVersion(“2.0”)] attribute, we are stating that this

controller is version 2.0. In the Get action, we are not returning a DTO to

the client, but we return the entity itself. Let’s version our original

controller as well:

[ApiVersion("1.0")]
[Route("api/companies")]
[ApiController]
public class CompaniesController : ControllerBase

If you remember, we configured versioning to use 1.0 as a default API

version (opt.AssumeDefaultVersionWhenUnspecified = true;). Therefore, if a client

doesn’t state the required version, our API will use this one:

219

https://localhost:5001/api/companies

You can see that we have the fullAddress property in a result, which

means that our original controller was called even though we didn’t

provide an API version in a request.

Now, let’s see how we can provide a version inside the request.

24.2.1 Using Query String

We can provide a version within the request by using a query string in the

URI. Let’s test this with an example:

https://localhost:5001/api/companies?api-version=2.0

220

As you can see, the Company entity is returned as a response body and

not CompanyDto. Therefore, we are sure that version 2.0 was called.

Additionally, we can inspect the response headers to make sure that

version 2.0 is used:

24.2.2 Using URL Versioning

For URL versioning to work, we have to modify the route in our controller:

221

[ApiVersion("2.0")]
[Route("api/{v:apiversion}/companies")]
[ApiController]
public class CompaniesV2Controller : ControllerBase

Now, we can test it:

https://localhost:5001/api/2.0/companies

One thing to mention, we can’t use the query string pattern to call the

companies v2 controller anymore. We can use it for version 1.0, though.

24.2.3 HTTP Header Versioning

If we don’t want to change the URI of the API, we can send the version in

the HTTP Header. To enable this, we have to modify our configuration:

public static void ConfigureVersioning(this IServiceCollection services)
{
 services.AddApiVersioning(opt =>
 {
 opt.ReportApiVersions = true;
 opt.AssumeDefaultVersionWhenUnspecified = true;
 opt.DefaultApiVersion = new ApiVersion(1, 0);
 opt.ApiVersionReader = new HeaderApiVersionReader("api-version");
 });
}

And to revert the Route change in our controller:

[ApiVersion("2.0")]
[Route("api/companies")]

Let’s test these changes:

222

https://localhost:5001/api/companies

If we want to support query string versioning, we should use a new

QueryApiVersionReader class instead.

24.2.4 Deprecating Versions

If we want to deprecate version of an API, but don’t want to remove it

completely, we can use the Deprecated property for that purpose:

[ApiVersion("2.0", Deprecated = true)]

We will be able to work with that API, but we will be notified that this

version is deprecated:

223

24.2.5 Using Conventions

If we have a lot of versions of a single controller, we can assign these

versions in the configuration instead:

opt.Conventions.Controller<CompaniesController>().HasApiVersion(new ApiVersion(1, 0));
opt.Conventions.Controller<CompaniesV2Controller>().HasDeprecatedApiVersion(new
ApiVersion(2, 0));

Now, we can remove the [ApiVersion] attribute from the controllers.

Of course, there are a lot more features that the installed library provides

for us — but with the mentioned ones, we have covered quite enough to

version our APIs.

224

In this section, we are going to learn about caching resources. Caching

can improve the quality and performance of our app a lot, but again, it is

something first we need to look at as soon as some bug appears. To cover

resource caching, we are going to work with HTTP Cache. Additionally, we

are going to talk about cache expiration, validation, and cache-control

headers.

We want to use cache in our app because it can significantly improve

performance. Otherwise, it would be useless. The main goal of caching is

to eliminate the need to send requests towards the API in many cases and

also to send full responses in other cases.

To reduce the number of sent requests, caching uses the expiration

mechanism, which helps reduce network round trips. Furthermore, to

eliminate the need to send full responses, the cache uses the validation

mechanism, which reduces network bandwidth. We can now see why

these two are so important when caching resources.

The cache is a separate component that accepts requests from the API’s

consumer. It also accepts the response from the API and stores that

response if they are cacheable. Once the response is stored, if a

consumer requests the same response again, the response from the

cache should be served.

But the cache behaves differently depending on what cache type is used.

25.1.1 Cache Types

There are three types of caches: Client Cache, Gateway Cache, and Proxy

Cache.

225

The client cache lives on the client (browser); thus, it is a private cache.

It is private because it is related to a single client. So every client

consuming our API has a private cache.

The gateway cache lives on the server and is a shared cache. This cache

is shared because the resources it caches are shared over different

clients.

The proxy cache is also a shared cache, but it doesn’t live on the server

nor the client side. It lives on the network.

With the private cache, if five clients request the same response for the

first time, every response will be served from the API and not from the

cache. But if they request the same response again, that response should

come from the cache (if it’s not expired). This is not the case with the

shared cache. The response from the first client is going to be cached,

and then the other four clients will receive the cached response if they

request it.

25.1.2 Response Cache Attribute

So, to cache some resources, we have to know whether or not it’s

cacheable. The response header helps us with that. The one that is used

most often is Cache-Control: Cache-Control: max-age=180. This states

that the response should be cached for 180 seconds. For that, we use the

ResponseCache attribute. But of course, this is just a header. If we want

to cache something, we need a cache-store. For our example, we are

going to use Response caching middleware provided by ASP.NET Core.

Before we start, let’s open Postman and modify the settings to support

caching:

226

In the General tab under Headers, we are going to turn off the Send no-

cache header:

Great. We can move on.

Let’s assume we want to cache the result from the GetCompany action:

As you can see, we can work with different properties in the

ResponseCache attribute — but for now, we are going to use Duration

only:

[HttpGet("{id}", Name = "CompanyById")]
[ResponseCache(Duration = 60)]
public async Task<IActionResult> GetCompany(Guid id)

And that is it. We can inspect our result now:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

227

You can see that the Cache-Control header was created with a public

cache and a duration of 60 seconds. But as we said, this is just a header;

we need a cache-store to cache the response. So, let’s add one.

The first thing we are going to do is add an extension method in the

ServiceExtensions class:

public static void ConfigureResponseCaching(this IServiceCollection services) =>

services.AddResponseCaching();

We register response caching in the IOC container, and now we have to

call this method in the ConfigureServices method:

services.ConfigureResponseCaching();

Additionally, we have to add caching to the application middleware in the

Configure method right above UseRouting():

app.UseResponseCaching();

app.UseRouting();

Now, we can start our application and send the same GetCompany

request. It will generate the Cache-Control header. After that, before 60

seconds pass, we are going to send the same request and inspect the

headers:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

228

You can see the additional Age header that indicates the number of

seconds the object has been stored in the cache. Basically, it means that

we received our second response from the cache-store. We can confirm

that from the console as well:

If we send several requests within the 60 seconds, the Age property will

increment. After the expiration period passes, the response will be sent

from the API, cached again, and the Age header will not be generated.

Additionally, we can use cache profiles to apply the same rules to

different resources. If you look at the picture that shows all the properties

we can use with ResponseCacheAttribute, you can see that there are a

lot of properties. Configuring all of them on top of the action or controller

could lead to less readable code. Therefore, we can use CacheProfiles

to extract that configuration.

To do that, we are going to modify AddControllers in the

ConfigureServices method:

services.AddControllers(config =>
{
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
 config.CacheProfiles.Add("120SecondsDuration", new CacheProfile { Duration = 120
});
})…

We only set up Duration, but you can add additional properties as well.

Now, let’s implement this profile on top of the Companies controller:

[Route("api/companies")]

229

[ApiController]
[ResponseCache(CacheProfileName = "120SecondsDuration")]

We have to mention that this cache rule will apply to all the actions inside

the controller except the ones that already have the ResponseCache

attribute applied.

That said, once we send the request to GetCompany, we will still have the

maximum age of 60. But once we send the request to GetCompanies:

https://localhost:5001/api/companies

There you go. Now, let’s talk some more about the Expiration and

Validation models.

The expiration model allows the server to recognize whether or not the

response has expired. As long as the response is fresh, it will be served

from the cache. To achieve that, the Cache-Control header is used. We

have seen this in the previous example.

Let’s look at the diagram to see how caching works:

230

So, the client sends a request to get companies. There is no cached

version of that response; therefore, the request is forwarded to the API.

The API returns the response with the Cache-Control header with a 10-

minute expiration period; it is being stored in the cache and forwarded to

the client.

If after two minutes, the same response has been requested:

We can see that the cached response was served with an additional Age

header with 120 seconds or two minutes. If this is a private cache, that is

where it stops. That’s because the private cache is stored in the browser

and another client will hit the API for the same response. But if this is a

231

shared cache and another client requests the same response after an

additional two minutes:

The response is served from the cache with an additional two minutes

added to the Age header.

We saw how the Expiration model works, now let’s inspect the Validation

model.

The validation model is used to validate the freshness of the response. So

it checks if the response is cached and still usable. Let’s assume we have

a shared cached GetCompany response for 30 minutes. If someone

updates that company after five minutes, without validation the client

would receive the wrong response for another 25 minutes — not the

updated one.

To prevent that, we use validators. The HTTP standard advises using Last-

Modified and ETag validators in combination if possible.

Let’s see how validation works:

232

So again, the client sends a request, it is not cached, and so it is

forwarded to the API. Our API returns the response that contains the Etag

and Last-Modified headers. That response is cached and forwarded to the

client.

After two minutes, the client sends the same request:

So, the same request is sent, but we don’t know if the response is valid.

Therefore, the cache forwards that request to the API with the additional

headers If-None-Match — which is set to the Etag value — and If-

233

Modified-Since — which is set to the Last-Modified value. If this request

checks out against the validators, our API doesn’t have to recreate the

same response; it just sends a 304 Not Modified status. After that, the

regular response is served from the cache. Of course, if this doesn’t check

out, the new response must be generated.

That brings us to the conclusion that for the shared cache if the response

hasn’t been modified, that response has to be generated only once.

Let’s see all of these in an example.

We have to install the Marvin.Cache.Headers (we use 4.1.01 version)

library in the main project. This library supports HTTP cache headers like

Cache-Control, Expires, Etag, and Last-Modified and also implements

validation and expiration models:

Now, let’s modify the ServiceExtensions class:

public static void ConfigureHttpCacheHeaders(this IServiceCollection services) =>

services.AddHttpCacheHeaders();

We are going to add additional configuration later.

Then, let’s modify the ConfigureServices method:

services.ConfigureResponseCaching();
services.ConfigureHttpCacheHeaders();

1 With a newer version of Marvin.Cache.Headers library, you have to call the

services.AddHttpContextAccessor() method in the ConfigureServices method.

234

And finally, let’s modify the Configure method:

app.UseResponseCaching();
app.UseHttpCacheHeaders();

To test this, we have to remove or comment out ResponseCache

attributes in the CompaniesController. The installed library will provide

that for us.

Now, let’s send the GetCompany request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

As you can see, we have all the required headers generated. The default

expiration is set to 60 seconds and if we send this request one more time,

we are going to get an additional Age header.

25.6.1 Configuration

We can globally configure our expiration and validation headers. To do

that, let’s modify the ConfigureHttpCacheHeaders method:

public static void ConfigureHttpCacheHeaders(this IServiceCollection services) =>
 services.AddHttpCacheHeaders(
 (expirationOpt) =>
 {
 expirationOpt.MaxAge = 65;
 expirationOpt.CacheLocation = CacheLocation.Private;
 },
 (validationOpt) =>
 {
 validationOpt.MustRevalidate = true;

235

 });

After that, we are going to send the same request for the single company:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

You can see that the changes are implemented. Now, this is a private

cache with an age of 65 seconds. Because it is a private cache, our API

won’t cache it:

Other then global configuration, we can apply it on the resource level (on

action or controller). The overriding rules are the same. Configuration on

the action level will override the configuration on the controller or global

level. Also, the configuration on the controller level will override the global

level configuration.

To apply a resource level configuration, we have to use the

HttpCacheExpiration and HttpCacheValidation attributes:

[HttpGet("{id}", Name = "CompanyById")]
[HttpCacheExpiration(CacheLocation = CacheLocation.Public, MaxAge = 60)]
[HttpCacheValidation(MustRevalidate = false)]
public async Task<IActionResult> GetCompany(Guid id)

236

Once we send the GetCompanies request, we are going to see global

values:

But if we send the GetCompany request:

You can see that it is public and you can inspect the console to see the

cached response.

First, we have to mention that the ResponseCaching library doesn’t

correctly implement the validation model. Also, using the authorization

header is a problem. We are going to show you alternatives later. But for

now, we can simulate how validation with Etag should work.

So, let’s restart our app to have a fresh application, and send a

GetCompany request one more time. In a header, we are going to get our

ETag. Let’s copy the Etag’s value and use another GetCompany request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

We send the If-None-Match tag with the value of our Etag. And we can

see as a result we get 304 Not Modified.

But this is not a valid situation. As we said, the client should send a valid

request and it is up to the Cache to add an If-None-Match tag. In our

237

example, which we sent from Postman, we simulated that. Then, it is up

to the server to return a 304 message to the cache and then the cache

should return the same response.

But anyhow, we have managed to show you how validation works.

If we update that company:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

And then send the same request with the same If-None-Match value:

238

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

You can see that we get 200 OK and that ETag is different because the

resource changed.

So, we saw how validation works and also concluded that the

ResponseCaching library is not that good for validation — it is much

better for just expiration.

But then, what are the alternatives?

There are a lot of alternatives, such as:

 Varnish - https://varnish-cache.org/

 Apache Traffic Server - https://trafficserver.apache.org/

 Squid - http://www.squid-cache.org/

https://varnish-cache.org/
https://trafficserver.apache.org/
http://www.squid-cache.org/

239

They implement caching correctly. And if you want to have expiration and

validation, you should combine them with the Marvin library and you are

good to go. But those servers are not that trivial to implement.

There is another option: CDN (Content Delivery Network). CDN uses HTTP

caching and is used by various sites on the internet. The good thing with

CDN is we don’t need to set up a cache server by ourselves, but

unfortunately, we have to pay for it. The previous cache servers we

presented are free to use. So, it’s up to you to decide what suits you best.

240

Rate Limiting allows us to protect our API against too many requests that

can deteriorate our API’s performance. API is going to reject requests that

exceed the limit. Throttling queues exceeded requests for possible later

processing. The API will eventually reject the request if processing cannot

occur after a certain number of attempts.

For example, we can configure our API to create a limitation of 100

requests/hour per client. Or additionally, we can limit a client to the

maximum 1,000 requests/day per IP and 100 requests/hour. We can

even limit the number of requests for a specific resource in our API; for

example, 50 requests to api/companies.

To provide information about rate limiting, we use the response headers.

They are separated between Allowed requests, which all start with the X-

Rate-Limit and Disallowed requests.

The Allowed requests header contains the following information :

 X-Rate-Limit-Limit – rate limit period.

 X-Rate-Limit-Remaining – number of remaining requests.

 X-Rate-Limit-Reset – date/time information about resetting the

request limit.

For the disallowed requests, we use a 429 status code; that stands for too

many requests. This header may include the Retry-After response header

and should explain details in the response body.

To start, we have to install the AspNetCoreRateLimit library:

241

Then, we have to add it to the service collection. This library uses a

memory cache to store its counters and rules. Therefore, we have to add

the MemoryCache to the service collection as well.

That said, let’s add the MemoryCache:

services.AddMemoryCache();

After that, we are going to create another extension method in the

ServiceExtensions class:

public static void ConfigureRateLimitingOptions(this IServiceCollection services)
{
 var rateLimitRules = new List<RateLimitRule>
 {
 new RateLimitRule
 {
 Endpoint = "*",
 Limit= 3,
 Period = "5m"
 }
 };

 services.Configure<IpRateLimitOptions>(opt =>
 {
 opt.GeneralRules = rateLimitRules;
 });

 services.AddSingleton<IRateLimitCounterStore, MemoryCacheRateLimitCounterStore>();
 services.AddSingleton<IIpPolicyStore, MemoryCacheIpPolicyStore>();
 services.AddSingleton<IRateLimitConfiguration, RateLimitConfiguration>();
}

We create a rate limit rules first, for now just one, stating that three

requests are allowed in a five-minute period for any endpoint in our API.

Then, we configure IpRateLimitOptions to add the created rule. Finally, we

have to register rate limit stores and configuration as a singleton. They

serve the purpose of storing rate limit counters and policies as well as

adding configuration.

Now, we have to modify the ConfigureServices method:

services.AddMemoryCache();

services.ConfigureRateLimitingOptions();
services.AddHttpContextAccessor();

242

Finally, we have to add it to the request pipeline in the Configure

method:

app.UseIpRateLimiting();

app.UseRouting();

And that is it. We can test this now:

https://localhost:5001/api/companies

So, we can see that we have two requests remaining and the time to

reset the rule. If we send an additional three requests in the five-minute

period of time, we are going to get a different response:

243

https://localhost:5001/api/companies

The status code is 429 Too Many Requests and we have the Retry-After

header.

We can inspect the body as well:

https://localhost:5001/api/companies

So, our rate limiting works.

There are a lot of options that can be configured with Rate Limiting and

you can read more about them on the AspNetCoreRateLimit GitHub page.

244

User authentication is an important part of any application. It refers to the

process of confirming the identity of an application’s users. Implementing

it properly could be a hard job if you are not familiar with the process.

Also, it could take a lot of time that could be spent on different features of

an application.

So, in this section, we are going to learn about authentication and

authorization in ASP.NET Core by using Identity and JWT (Json Web

Token). We are going to explain step by step how to integrate Identity in

the existing project and then how to implement JWT for the

authentication and authorization actions.

ASP.NET Core provides us with both functionalities, making

implementation even easier.

So, let’s start with Identity integration.

Asp.NET Core Identity is the membership system for web applications that

includes membership, login, and user data. It provides a rich set of

services that help us with creating users, hashing their passwords,

creating a database model, and the authentication overall.

That said, let’s start with the integration process.

The first thing we have to do is to install the

Microsoft.AspNetCore.Identity.EntityFrameworkCore library in

the Entities project:

245

After the installation, we are going to create a new User class in the

Entities/Models folder:

public class User : IdentityUser
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

Our class inherits from the IdentityUser class that has been provided

by the ASP.NET Core Identity. It contains different properties and we can

extend it with our own as well.

After that, we have to modify the RepositoryContext class:

public class RepositoryContext : IdentityDbContext<User>
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 }

 public DbSet<Company> Companies { get; set; }
 public DbSet<Employee> Employees { get; set; }
}

So, our class now inherits from the IdentityDbContext class and not

DbContext because we want to integrate our context with Identity.

Additionally, we call the OnModelCreating method from the base class.

This is required for migration to work properly.

Now, we have to move on to the configuration part.

To do that, let’s create a new extension method in the

ServiceExtensions class:

public static void ConfigureIdentity(this IServiceCollection services)
{

246

 var builder = services.AddIdentityCore<User>(o =>
 {
 o.Password.RequireDigit = true;
 o.Password.RequireLowercase = false;
 o.Password.RequireUppercase = false;
 o.Password.RequireNonAlphanumeric = false;
 o.Password.RequiredLength = 10;
 o.User.RequireUniqueEmail = true;
 });

 builder = new IdentityBuilder(builder.UserType, typeof(IdentityRole),
builder.Services);
 builder.AddEntityFrameworkStores<RepositoryContext>()
 .AddDefaultTokenProviders();
}

With the AddIdentityCore method, we are adding and configuring

Identity for the specific type; in this case, the User type. As you can see,

we use different configuration parameters that are pretty self-explanatory

on their own. Identity provides us with even more features to configure,

but these are sufficient for our example.

Then, we create an Identity builder and add EntityFrameworkStores

implementation with the default token providers.

Now, let’s modify the ConfigureServices method:

services.AddAuthentication();
services.ConfigureIdentity();

And, let’s modify the Configure method:

app.UseAuthentication();
app.UseAuthorization();

That’s it. We have prepared everything we need.

Creating tables is quite an easy process. All we have to do is to create

and apply migration. So, let’s create a migration:

PM> Add-Migration CreatingIdentityTables

And then apply it:

247

PM> Update-Database

If we check our database now, we are going to see additional tables:

For our project, the AspNetRoles, AspNetUserRoles, and AspNetUsers

tables will be quite enough. If you open the AspNetUsers table, you will

see additional FirstName and LastName columns.

Now, let’s insert several roles in the AspNetRoles table, again by using

migrations. The first thing we are going to do is to create the

RoleConfiguration class in the Entities/Configuration folder:

public class RoleConfiguration : IEntityTypeConfiguration<IdentityRole>
{
 public void Configure(EntityTypeBuilder<IdentityRole> builder)
 {
 builder.HasData(
 new IdentityRole
 {
 Name = "Manager",
 NormalizedName = "MANAGER"
 },
 new IdentityRole
 {
 Name = "Administrator",
 NormalizedName = "ADMINISTRATOR"
 }
);
}

248

And let’s modify the OnModelCreating method in the

RepositoryContext class:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 modelBuilder.ApplyConfiguration(new RoleConfiguration());
}

Finally, let’s create and apply migration:

PM> Add-Migration AddedRolesToDb

PM> Update-Database

If you check the AspNetRoles table, you will find two new roles created.

For this, we have to create a new controller:

[Route("api/authentication")]
[ApiController]
public class AuthenticationController: ControllerBase
{
 private readonly ILoggerManager _logger;
 private readonly IMapper _mapper;
 private readonly UserManager<User> _userManager;
 public AuthenticationController (ILoggerManager logger, IMapper mapper,
UserManager<User> userManager)
 {
 _logger = logger;
 _mapper = mapper;
 _userManager = userManager;
 }
}

So, this is a familiar code except for the UserManager<TUser> part. That

service is provided by Identity and it provides APIs for managing users.

We don’t have to inject our repository here because UserManager

provides us all we need for this example.

The next thing we have to do is to create a UserForRegistrationDto

class in the DataTransferObjects folder:

249

public class UserForRegistrationDto
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 [Required(ErrorMessage = "Username is required")]
 public string UserName { get; set; }
 [Required(ErrorMessage = "Password is required")]
 public string Password { get; set; }
 public string Email { get; set; }
 public string PhoneNumber { get; set; }
 public ICollection<string> Roles { get; set; }
}

Then, let’s create a mapping rule in the MappingProfile class:

CreateMap<UserForRegistrationDto, User>();

Finally, it is time to create the RegisterUser action:

[HttpPost]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> RegisterUser([FromBody] UserForRegistrationDto
userForRegistration)
{
 var user = _mapper.Map<User>(userForRegistration);

 var result = await _userManager.CreateAsync(user, userForRegistration.Password);
 if(!result.Succeeded)
 {
 foreach (var error in result.Errors)
 {
 ModelState.TryAddModelError(error.Code, error.Description);
 }

 return BadRequest(ModelState);
 }

 await _userManager.AddToRolesAsync(user, userForRegistration.Roles);

 return StatusCode(201);
}

We are implementing our existing action filter for the entity and model

validation on top of our action. After that, we map the DTO object to the

User object and call the CreateAsync method to create that specific user

in the database. The CreateAsync method will save the user to the

database if the action succeeds or it will return error messages. If it

returns error messages, we add them to the model state.

250

Finally, if a user is created, we connect it to its roles — the default one or

the ones sent from the client side — and return 201 created.

If you want, before calling AddToRoleAsync or AddToRolesAsync, you

can check if roles exist in the database. But for that, you have to inject

RoleManager<TRole> and use the RoleExistsAsync method. Now, we

can test this.

Before we continue, we should increase a rate limit from 3 to 30

(ServiceExtensions class, ConfigureRateLimitingOptions method)

just to not stand in our way while we’re testing the different features of

our application.

Let’s send a valid request first:

https://localhost:5001/api/authentication

And we get 201, which means that the user has been created and added

to the role. We can send additional invalid requests to test our Action and

Identity features.

If the model is invalid:

251

https://localhost:5001/api/authentication

If the password is invalid:

https://localhost:5001/api/authentication

Finally, if we want to create a user with the same user name and email:

https://localhost:5001/api/authentication

Excellent. Everything is working as planned. We can move on to the JWT

implementation.

Before we get into the implementation of authentication and

authorization, let’s have a quick look at the big picture. There is an

application that has a login form. A user enters its username and

password and presses the login button. After pressing the login button, a

client (e.g., web browser) sends the user’s data to the server’s API

endpoint:

252

When the server validates the user’s credentials and confirms that the

user is valid, it’s going to send an encoded JWT to the client. A JSON web

token is a JavaScript object that can contain some attributes of the

logged-in user. It can contain a username, user subject, user roles, or

some other useful information.

JSON web tokens enable a secure way to transmit data between two

parties in the form of a JSON object. It’s an open standard and it’s a

popular mechanism for web authentication. In our case, we are going to

use JSON web tokens to securely transfer a user’s data between the client

and the server.

JSON web tokens consist of three basic parts: the header, the payload,

and the signature.

One real example of a JSON web token:

Every part of all three parts is shown in a different color. The first part of

JWT is the header, which is a JSON object encoded in the base64 format.

The header is a standard part of JWT and we don’t have to worry about it.

253

It contains information like the type of token and the name of the

algorithm:

 {
 "alg": "HS256",
 "typ": "JWT"
 }

After the header, we have a payload which is also a JavaScript object

encoded in the base64 format. The payload contains some attributes

about the logged-in user. For example, it can contain the user id, the user

subject, and information about whether a user is an admin user or not.

JSON web tokens are not encrypted and can be decoded with any

base64 decoder, so please never include sensitive information in the

Payload:

{
 "sub": "1234567890",
 "name": "John Doe",
 "iat": 1516239022
}

Finally, we have the signature part. Usually, the server uses the signature

part to verify whether the token contains valid information, the

information which the server is issuing. It is a digital signature that gets

generated by combining the header and the payload. Moreover, it’s based

on a secret key that only the server knows:

So, if malicious users try to modify the values in the payload, they have

to recreate the signature; for that purpose, they need the secret key only

known to the server. At the server side, we can easily verify if the values

254

are original or not by comparing the original signature with a new

signature computed from the values coming from the client.

So, we can easily verify the integrity of our data just by comparing the

digital signatures. This is the reason why we use JWT.

Let’s start by modifying the appsettings.json file:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "ConnectionStrings": {
 "sqlConnection": "server=.; database=CompanyEmployee; Integrated Security=true"
 },
 "JwtSettings": {
 "validIssuer": "CodeMazeAPI",
 "validAudience": "https://localhost:5001"
 },
 "AllowedHosts": "*"
}

We just store the issuer and audience information in the appsettings.json

file. We are going to talk more about that in a minute. As you probably

remember, we require a secret key on the server-side. So, we are going

to create one and store it in the environment variable because this is

much safer than storing it inside the project.

To create an environment variable, we have to open the cmd window as

an administrator and type the following command:

setx SECRET "CodeMazeSecretKey" /M

This is going to create a system environment variable with the name

SECRET and the value CodeMazeSecretKey. By using /M we specify that

we want a system variable and not local.

Great.

255

We can now modify the ServiceExtensions class:

public static void ConfigureJWT(this IServiceCollection services, IConfiguration
configuration)
{
 var jwtSettings = configuration.GetSection("JwtSettings");
 var secretKey = Environment.GetEnvironmentVariable("SECRET");

 services.AddAuthentication(opt => {
 opt.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
 opt.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
 })
 .AddJwtBearer(options =>
 {
 options.TokenValidationParameters = new TokenValidationParameters
 {
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,

 ValidIssuer = jwtSettings.GetSection("validIssuer").Value,
 ValidAudience = jwtSettings.GetSection("validAudience").Value,
 IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(secretKey))
 };
 });
}

First, we extract the JwtSettings from the appsettings.json file and

extract our environment variable (If you keep getting null for the secret

key, try restarting the Visual Studio or even your computer).

Then, we register the JWT authentication middleware by calling the

method AddAuthentication on the IServiceCollection interface.

Next, we specify the authentication scheme

JwtBearerDefaults.AuthenticationScheme as well as

ChallengeScheme. We also provide some parameters that will be used

while validating JWT. For this to work, we have to install the

Microsoft.AspNetCore.Authentication.JwtBearer library.

Excellent.

We’ve successfully configured the JWT authentication.

According to the configuration, the token is going to be valid if:

256

 The issuer is the actual server that created the token

(ValidateIssuer=true)

 The receiver of the token is a valid recipient

(ValidateAudience=true)

 The token has not expired (ValidateLifetime=true)

 The signing key is valid and is trusted by the server

(ValidateIssuerSigningKey=true)

Additionally, we are providing values for the issuer, the audience, and the

secret key that the server uses to generate the signature for JWT.

All we have to do is to call this method in the ConfigureServices method:

services.ConfigureIdentity();
services.ConfigureJWT(Configuration);

And that is it. We can now protect our endpoints.

Let’s open the CompaniesController and add an additional attribute

above the GetCompanies action:

[HttpGet(Name = "GetCompanies"), Authorize]
public async Task<IActionResult> GetCompanies()

To test this, let’s send a request to get all companies:

https://localhost:5001/api/companies

We see the protection works. We get a 401 Unauthorized message, which

is expected because an unauthorized user tried to access the protected

257

endpoint. So, what we need is our user to be authenticated and to have a

valid token.

Let’s begin with the UserForAuthenticationDto class:

public class UserForAuthenticationDto
{
 [Required(ErrorMessage = "User name is required")]
 public string UserName { get; set; }

 [Required(ErrorMessage = "Password name is required")]
 public string Password { get; set; }
 }

We are going to have some complex logic for the authentication and the

token generation actions; therefore, it is best to extract these actions in

another service.

That said, let’s create a new IAuthenticationManager interface in the

Contracts project:

public interface IAuthenticationManager
{
 Task<bool> ValidateUser(UserForAuthenticationDto userForAuth);
 Task<string> CreateToken();
}

Next, let’s create the AuthenticationManager class and implement this

interface:

public class AuthenticationManager : IAuthenticationManager
{
 private readonly UserManager<User> _userManager;
 private readonly IConfiguration _configuration;

 private User _user;

 public AuthenticationManager(UserManager<User> userManager, IConfiguration
configuration)
 {
 _userManager = userManager;
 _configuration = configuration;
 }

 public async Task<bool> ValidateUser(UserForAuthenticationDto userForAuth)
 {

258

 _user = await _userManager.FindByNameAsync(userForAuth.UserName);

 return (_user != null && await _userManager.CheckPasswordAsync(_user,
userForAuth.Password));
 }

 public async Task<string> CreateToken()
 {
 var signingCredentials = GetSigningCredentials();
 var claims = await GetClaims();
 var tokenOptions = GenerateTokenOptions(signingCredentials, claims);

 return new JwtSecurityTokenHandler().WriteToken(tokenOptions);
 }

 private SigningCredentials GetSigningCredentials()
 {
 var key =
Encoding.UTF8.GetBytes(Environment.GetEnvironmentVariable("SECRET"));
 var secret = new SymmetricSecurityKey(key);

 return new SigningCredentials(secret, SecurityAlgorithms.HmacSha256);
 }

 private async Task<List<Claim>> GetClaims()
 {
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, _user.UserName)
 };

 var roles = await _userManager.GetRolesAsync(_user);
 foreach (var role in roles)
 {
 claims.Add(new Claim(ClaimTypes.Role, role));
 }

 return claims;
 }

 private JwtSecurityToken GenerateTokenOptions(SigningCredentials
signingCredentials, List<Claim> claims)
 {
 var jwtSettings = _configuration.GetSection("JwtSettings");

 var tokenOptions = new JwtSecurityToken
 (
 issuer: jwtSettings.GetSection("validIssuer").Value,
 audience: jwtSettings.GetSection("validAudience").Value,
 claims: claims,
 expires:
DateTime.Now.AddMinutes(Convert.ToDouble(jwtSettings.GetSection("expires").Value)),
 signingCredentials: signingCredentials
);

 return tokenOptions;
 }
}

259

In the ValidateUser method, we check whether the user exists in the

database and if the password matches. The UserManager<TUser> class

provides the FindByNameAsync method to find the user by user name

and the CheckPasswordAsync to verify the user’s password against the

hashed password from the database.

The CreateToken method does exactly that — it creates a token. It does

that by collecting information from the private methods and serializing

token options with the WriteToken method.

We have three private methods as well. The GetSignInCredentials

method returns our secret key as a byte array with the security

algorithm. The GetClaims method creates a list of claims with the user

name inside and all the roles the user belongs to. The last method,

GenerateTokenOptions, creates an object of the JwtSecurityToken type

with all of the required options. We can see the expires parameter as one

of the token options. We would extract it from the appsettings.json file as

well, but we don’t have it there. So, we have to add it:

"JwtSettings": {
 "validIssuer": "CodeMazeAPI",
 "validAudience": "https://localhost:5001",
 "expires": 5
 }

After that, we want to register this class in the IServiceCollection:

services.AddScoped<IAuthenticationManager, AuthenticationManager>();

Finally, we have to modify the AuthenticationController:

[Route("api/authentication")]
[ApiController]
public class AuthenticationController : ControllerBase
{
 private readonly ILoggerManager _logger;
 private readonly IMapper _mapper;
 private readonly UserManager<User> _userManager;
 private readonly IAuthenticationManager _authManager;
 public AuthenticationController(ILoggerManager logger, IMapper mapper,
UserManager<User> userManager, IAuthenticationManager authManager)

260

 {
 _logger = logger;
 _mapper = mapper;
 _userManager = userManager;
 _authManager = authManager;
 }

 //Previous action

 [HttpPost("login")]
 [ServiceFilter(typeof(ValidationFilterAttribute))]
 public async Task<IActionResult> Authenticate([FromBody] UserForAuthenticationDto
user)
 {
 if (!await _authManager.ValidateUser(user))
 {
 _logger.LogWarn($"{nameof(Authenticate)}: Authentication failed. Wrong
user name or password.");
 return Unauthorized();
 }

 return Ok(new { Token = await _authManager.CreateToken() });
 }
}

There is really nothing special in this controller. If validation fails, we

return the 401 Unauthorized response; otherwise, we return our created

token:

261

https://localhost:5001/api/authentication/login

Excellent. We can see our token generated.

Now, let’s send invalid credentials:

https://localhost:5001/api/authentication/login

262

And we get a 401 Unauthorized message.

Right now if we send a request to the GetCompanies action, we are still

going to get the 401 Unauthorized response even though we have

successful authentication. That’s because we didn’t provide our token in a

request header and our API has nothing to authorize against. To solve

that, we are going to create another GET request, and in the

Authorization header choose the header type and paste the token from

the previous request:

263

https://localhost:5001/api/companies

Now, we can send the request again:

https://localhost:5001/api/authentication/login

Excellent. It works like a charm.

Right now, even though authentication and authorization are working as

expected, every single authenticated user can access the GetCompanies

264

action. What if we don’t want that type of behavior? For example, we

want to allow only managers to access it. To do that, we have to make

one simple change:

[HttpGet(Name = "GetCompanies"), Authorize(Roles = "Manager")]
public async Task<IActionResult> GetCompanies()

And that is it. To test this, let’s create another user with the Administrator

role (the second role from the database):

We get 201.

After we send an authentication request for Jane Doe, we are going to get

a new token. Let’s use that token to send the request towards the

GetCompanies action:

265

https://localhost:5001/api/companies

As you can see, we get a 403 Forbidden message because this user is not

allowed to access the required endpoint. If we login with John Doe and

use his token, we are going to get a successful response for sure. Of

course, we don’t have to place an Authorize attribute only on top of the

action; we can place it on the controller level as well. For example, we

can place just [Authorize] on the controller level to allow only authorized

users to access all the actions in that controller; also, we can place the

[Authorize (Role=…)] on top of any action in that controller to state that

only a user with that specific role has access to that action.

One more thing. Our token expires after five minutes from the creation

point. So, if we try to send another request after that period, we are

going to get the 401 Unauthorized status for sure. Feel free to try.

266

Developers who consume our API might be trying to solve important

business problems with it. Hence, it is very important for them to

understand how to use our API effectively. This is where API

documentation comes into the picture.

API documentation is the process of giving instructions on how to

effectively use and integrate an API. Hence, it can be thought of as a

concise reference manual containing all the information required to work

with the API, with details about functions, classes, return types,

arguments, and more, supported by tutorials and examples.

So, having the proper documentation for our API enables consumers to

integrate our APIs as quickly as possible and move forward with their

development. Furthermore, this also helps them understand the value and

usage of our API, improves the chances for our API’s adoption, and makes

our APIs easier to maintain and support.

Swagger is a language-agnostic specification for describing REST APIs.

Swagger is also referred to as OpenAPI. It allows us to understand the

capabilities of a service without looking at the actual implementation

code.

Swagger minimizes the amount of work needed while integrating an API.

Similarly, it also helps API developers document their APIs quickly and

accurately.

Swagger Specification is an important part of the Swagger flow. By

default, a document named swagger.json is generated by the Swagger

267

tool which is based on our API. It describes the capabilities of our API and

how to access it via HTTP.

We can use the Swashbuckle package to easily integrate Swagger into our

.NET Core Web API project. It will generate the Swagger specification for

the project as well. Additionally, the Swagger UI is also contained within

Swashbuckle.

There are three main components in the Swashbuckle package:

 Swashbuckle.AspNetCore.Swagger: This contains the Swagger

object model and the middleware to expose SwaggerDocument

objects as JSON.

 Swashbuckle.AspNetCore.SwaggerGen: A Swagger generator

that builds SwaggerDocument objects directly from our routes,

controllers, and models.

 Swashbuckle.AspNetCore.SwaggerUI: An embedded version of

the Swagger UI tool. It interprets Swagger JSON to build a rich,

customizable experience for describing web API functionality.

So, the first thing we are going to do is to install the required library. Let’s

open the Package Manager Console window and type the following

command:

PM> Install-Package Swashbuckle.AspNetCore -version 5.6.3

After a couple of seconds, the package will be installed. Now, we have to

configure the Swagger Middleware. To do that, we are going to add a new

method in the ServiceExtensions class:

public static void ConfigureSwagger(this IServiceCollection services)
{
 services.AddSwaggerGen(s =>
 {

268

 s.SwaggerDoc("v1", new OpenApiInfo { Title = "Code Maze API", Version = "v1"
});
 s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2"
});
 });
}

We are creating two versions of SwaggerDoc because if you remember,

we have two versions for the Companies controller and we want to

separate them in our documentation.

The next step is to call this method in the ConfigureServices method:

services.ConfigureSwagger();

And finally, in the Configure method, we are going to add it to the

application’s execution pipeline together with the UI feature:

app.UseSwagger();
app.UseSwaggerUI(s =>
{
 s.SwaggerEndpoint("/swagger/v1/swagger.json", "Code Maze API v1");
 s.SwaggerEndpoint("/swagger/v2/swagger.json", "Code Maze API v2");
});

Finally, let’s sligthly modify the Companies and CompaniesV2 controllers:

[Route("api/companies")]
[ApiController]
[ApiExplorerSettings(GroupName = "v1")]
public class CompaniesController : ControllerBase

[Route("api/companies")]
[ApiController]
[ApiExplorerSettings(GroupName = "v2")]
public class CompaniesV2Controller : ControllerBase

With this change, we state that the CompaniesController belongs to group

v1 and the CompaniesV2Controller belongs to group v2. All the other

controllers will be included in both groups because they are not versioned.

Which is what we want.

And that is all. We have prepared the basic configuration.

Now, we can start our app, open the browser, and navigate to

https://localhost:5001/swagger/v1/swagger.json. Once the page

269

is up, you are going to see a json document containing all the controllers

and actions without the v2 companies controller. Of course, if you change

v1 to v2 in the URL, you are going to see all the controllers — including

v2 companies, but without v1 companies.

Additionally, let’s navigate to

https://localhost:5001/swagger/index.html:

If we click on a specific controller to expand its details, we are going to

see all the actions inside:

270

Once we click on an action method, we can see detailed information like

parameters, response, and example values. There is also an option to try

out each of those action methods by clicking the Try it out button.

So, let’s try it with the /api/companies action:

Once we click the Execute button, we are going to see that we get our

response:

271

And this is an expected response. We are not authorized. To enable

authorization, we have to add some modifications.

To add authorization support, we need to modify the ConfigureSwagger

method:

public static void ConfigureSwagger(this IServiceCollection services)
{
 services.AddSwaggerGen(s =>
 {
 s.SwaggerDoc("v1", new OpenApiInfo { Title = "Code Maze API", Version = "v1"
});
 s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2"
});

 s.AddSecurityDefinition("Bearer", new OpenApiSecurityScheme
 {
 In = ParameterLocation.Header,
 Description = "Place to add JWT with Bearer",
 Name = "Authorization",
 Type = SecuritySchemeType.ApiKey,
 Scheme = "Bearer"
 });

 s.AddSecurityRequirement(new OpenApiSecurityRequirement()
 {

272

 {
 new OpenApiSecurityScheme
 {
 Reference = new OpenApiReference
 {
 Type = ReferenceType.SecurityScheme,
 Id = "Bearer"
 },
 Name = "Bearer",
 },
 new List<string>()
 }
 });
 });
}

With this modification, we are adding the security definition in our

swagger configuration. Now, we can start our app again and navigate to

the index.html page.

The first thing we are going to notice is the Authorize options for

requests:

We are going to use that in a moment. But let’s get our token first. For

that, let’s open the api/authentication/login action, click try it out, add

credentials, and copy the received token:

273

Once we have copied the token, we are going to click on the authorization

button for the /api/companies request, paste it with the Bearer in front of

it, and click Authorize:

274

After authorization, we are going to click on the Close button and try our

request:

And we get our response. Excellent job.

Swagger provides options for extending the documentation and

customizing the UI. Let’s explore some of those.

First, let’s see how we can specify the API info and description. The

configuration action passed to the AddSwaggerGen() method adds

275

information such as Contact, License, and Description. Let’s provide some

values for those:

s.SwaggerDoc("v1", new OpenApiInfo
{
 Title = "Code Maze API",
 Version = "v1",
 Description = "CompanyEmployees API by CodeMaze",
 TermsOfService = new Uri("https://example.com/terms"),
 Contact = new OpenApiContact
 {
 Name = "John Doe",
 Email = "John.Doe@gmail.com",
 Url = new Uri("https://twitter.com/johndoe"),
 },
 License = new OpenApiLicense
 {
 Name = "CompanyEmployees API LICX",
 Url = new Uri("https://example.com/license"),
 }
});
…

We have implemented this just for the first version, but you get the point.

Now, let’s run the application once again and explore the Swagger UI:

For enabling XML comments, we need to do the following steps:

 In the Build tab of the main project properties, check the box

labeled XML documentation file. Let’s keep the auto-generated file

path.

 Suppress warning 1591, which will now give warnings about any

method, class, or field that doesn’t have triple-slash comments.

276

Now, let’s modify our configuration:

s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2" });

var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
s.IncludeXmlComments(xmlPath);

Next, adding triple-slash comments to the action method enhances the

Swagger UI by adding a description to the section header:

/// <summary>
/// Gets the list of all companies
/// </summary>
/// <returns>The companies list</returns>
[HttpGet(Name = "GetCompanies"), Authorize(Roles = "Manager")]
public async Task<IActionResult> GetCompanies()

And this is the result:

The developers who consume our APIs are usually more interested in

what it returns — specifically the response types and error codes. Hence,

it is very important to describe our response types. These are denoted

using XML comments and data annotations.

277

Let’s enhance the response types a little bit:

/// <summary>
/// Creates a newly created company
/// </summary>
/// <param name="company"></param>
/// <returns>A newly created company</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>
/// <response code="422">If the model is invalid</response>
[HttpPost(Name = "CreateCompany")]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
[ProducesResponseType(422)]

278

Before we start the deployment process, we would like to point out one

important thing. We should always try to deploy an application on at least

a local machine to somehow simulate the production environment as soon

as we start with development. That way, we can observe how the

application behaves in a production environment from the beginning of

the development process.

That leads us to the conclusion that the deployment process should not be

the last step of the application’s lifecycle. We should deploy our

application to the staging environment as soon as we start building it.

That said, let’s start with the deployment process.

Before we create publish files, we have to do one thing in our project. In

the previous section, we integrated Swagger in our application and it is

using an xml file for the xml documentation. What we have to do is to

enable that file to be published with all the other published files from our

application.

To do that, let’s find the CompanyEmployees.xml file in the main project,

right-click on it, and choose Properties. In the next window, for the

Copy to Output Directory option, we are going to choose Copy

always.

That’s it. We can move on.

Let’s create a folder on the local machine with the name Publish. Inside

that folder, we want to place all of our files for the deployment. After the

folder creation, let’s right-click on the main project in the Solution

Explorer window and click publish option:

279

In the “Pick a publish target” window, we are going to choose the Folder

option and point to the location of the Publish folder we just created:

Publish windows can be different depending on the Visual Studio version.

Visual Studio is going to do its job and publish the required files in the

specified folder.

280

Before any further action, let’s install the .NET Core Windows Server

Hosting bundle on our system to install .NET Core Runtime. Furthermore,

with this bundle, we are installing the .NET Core Library and the ASP.NET

Core Module. This installation will create a reverse proxy between IIS and

the Kestrel server, which is crucial for the deployment process.

If you have a problem with missing SDK after installing the Hosting

Bundle, follow this solution suggested by Microsoft:

Installing the .NET Core Hosting Bundle modifies the PATH when it installs

the .NET Core runtime to point to the 32-bit (x86) version of .NET Core

(C:\Program Files (x86)\dotnet\). This can result in missing SDKs when

the 32-bit (x86) .NET Core dotnet command is used (No .NET Core SDKs

were detected). To resolve this problem, move C:\Program Files\dotnet\

to a position before C:\Program Files (x86)\dotnet\ on the PATH

environment variable.

After the installation, we are going to locate the Windows hosts file on

C:\Windows\System32\drivers\etc and add the following record at the

end of the file:

127.0.0.1 www.companyemployees.codemaze

After that, we are going to save the file.

If you don’t have IIS installed on your machine, you need to install it by

opening ControlPanel and then Programs and Features:

https://dotnet.microsoft.com/download/dotnet/thank-you/runtime-aspnetcore-5.0.0-windows-hosting-bundle-installer
https://dotnet.microsoft.com/download/dotnet/thank-you/runtime-aspnetcore-5.0.0-windows-hosting-bundle-installer

281

After the IIS installation finishes, let’s open the Run window (windows key

+ R) and type: inetmgr to open the IIS manager:

Now, we can create a new website:

282

In the next window, we need to add a name to our site and a path to the

published files:

After this step, we are going to have our site inside the “sites” folder in

the IIS Manager. Additionally, we need to set up some basic settings for

our application pool:

283

After we click on the Basic Settings link, let’s configure our application

pool:

ASP.NET Core runs in a separate process and manages the runtime. It

doesn't rely on loading the desktop CLR (.NET CLR). The Core Common

Language Runtime for .NET Core is booted to host the app in the worker

process. Setting the .NET CLR version to No Managed Code is optional but

recommended.

Our website and the application pool should be started automatically.

In the section where we configured JWT, we had to use a secret key that

we placed in the environment file. Now, we have to provide to IIS the

name of that key and the value as well.

https://asp.net/?fbclid=IwAR1rWdEZTzG1t5oyipFi4pTECXhmG1ufeZQEYAjTOvr_sMP3ERJlR_BU33I

284

The first step is to click on our site in IIS and open Configuration

Editor:

Then, in the section box, we are going to choose

system.webServer/aspNetcore:

From the “From” combo box, we are going to choose

ApplicationHost.config:

285

After that, we are going to select environment variables:

Click Add and type the name and the value of our variable:

As soon as we click the close button, we should click apply in the next

window, restart our application in IIS, and we are good to go.

Let’s open Postman and send a request for the Root document:

286

http://www.companyemployees.codemaze/api

We can see that our API is working as expected. If it’s not, and you have

a problem related to web.config in IIS, try reinstalling the Server Hosting

Bundle package.

But we still have one more thing to do. We have to add a login to the SQL

Server for IIS APPPOOL\CodeMaze Web Api and grant permissions to

the database. So, let’s open the SQL Server Management Studio and add

a new login:

287

In the next window, we are going to add our user:

After that, we are going to expand the Logins folder, right-click on our

user, and choose Properties. There, under UserMappings, we have to

select the CompanyEmployee database and grant the dbwriter and

dbreader roles.

288

Now, we can try to send the Authentication request:

http://www.companyemployees.codemaze/api/authentication/login

Excellent; we have our token. Now, we can send the request to the

GetCompanies action with the generated token:

http://www.companyemployees.codemaze/api/companies

And there we go. Our API is published and working as expected.

	TABLE OF CONTENTS
	1 Project Configuration
	1.1 Creating a New Project
	1.2 launchSettings.json File Configuration
	1.3 Program.cs and Startup.cs Explanations
	1.4 Extension Methods and CORS Configuration
	1.5 IIS Configuration
	1.6 Additional Code in the Startup Class
	1.7 Environment-Based Settings

	2 Configuring a Logging Service
	2.1 Creating the Required Projects
	2.2 Creating the ILoggerManager Interface and Installing NLog
	2.3 Implementing the Interface and Nlog.Config File
	2.4 Configuring Logger Service for Logging Messages
	2.5 DI, IoC, and Logger Service Testing

	3 Database Model and Repository Pattern
	3.1 Creating Models
	3.2 Context Class and the Database Connection
	3.3 Migration and Initial Data Seed
	3.4 Repository Pattern Logic
	3.5 Repository User Interfaces and Classes
	3.6 Creating a Repository Manager

	4 Handling GET Requests
	4.1 Controllers and Routing in WEB API
	4.2 Naming Our Resources
	4.3 Getting All Companies From the Database
	4.4 Testing the Result with Postman
	4.5 DTO Classes vs. Entity Model Classes
	4.6 Using AutoMapper in ASP.NET Core

	5 Global Error Handling
	5.1 Handling Errors Globally with the Built-In Middleware
	5.2 Startup Class Modification
	5.3 Testing the Result

	6 Getting Additional Resources
	6.1 Getting a Single Resource From the Database
	6.2 Parent/Child Relationships in Web API
	6.3 Getting a Single Employee for Company

	7 Content Negotiation
	7.1 What Do We Get Out of the Box?
	7.2 Changing the Default Configuration of Our Project
	7.3 Testing Content Negotiation
	7.4 Restricting Media Types
	7.5 More About Formatters
	7.6 Implementing a Custom Formatter

	8 Method Safety and Method Idempotency
	9 Creating Resources
	9.1 Handling POST Requests
	9.2 Code Explanation
	9.3 Creating a Child Resource
	9.4 Creating Children Resources Together with a Parent
	9.5 Creating a Collection of Resources
	9.6 Model Binding in API

	10 Working with DELETE Requests
	10.1 Deleting a Parent Resource with its Children

	11 Working with PUT Requests
	11.1 Updating Employee
	11.1.1 About the Update Method from the RepositoryBase Class

	11.2 Inserting Resources while Updating One

	12 Working With PATCH Requests
	12.1 Applying PATCH to the Employee Entity

	13 Validation
	13.1 Validation while Creating Resource
	13.1.1 Validating Int Type

	13.2 Validation for PUT Requests
	13.3 Validation for PATCH Requests

	14 Asynchronous Code
	14.1 What is Asynchronous Programming?
	14.2 Async, Await Keywords, and Return Types
	14.2.1 The IRepositoryBase Interface and the RepositoryBase Class Explanation

	14.3 Modifying the ICompanyRepository Interface and the CompanyRepository Class
	14.4 IRepositoryManager and RepositoryManager Changes
	14.5 Controller Modification

	15 Action Filters
	15.1 Action Filters Implementation
	15.2 The Scope of Action Filters
	15.3 Order of Invocation
	15.4 Improving the Code with Action Filters
	15.5 Validation with Action Filters
	15.6 Dependency Injection in Action Filters

	16 Paging
	16.1 What is Paging?
	16.2 Paging Implementation
	16.3 Concrete Query
	16.4 Improving the Solution
	16.4.1 Additional Advice

	17 Filtering
	17.1 What is Filtering?
	17.2 How is Filtering Different from Searching?
	17.3 How to Implement Filtering in ASP.NET Core Web API
	17.4 Sending and Testing a Query

	18 Searching
	18.1 What is Searching?
	18.2 Implementing Searching in Our Application
	18.3 Testing Our Implementation

	19 Sorting
	19.1 What is Sorting?
	19.2 How to Implement Sorting in ASP.NET Core Web API
	19.3 Implementation ? Step by Step
	19.4 Testing Our Implementation
	19.5 Improving the Sorting Functionality

	20 Data Shaping
	20.1 What is Data Shaping?
	20.2 How to Implement Data Shaping
	20.3 Step-by-Step Implementation
	20.4 Resolving XML Serialization Problems

	21 Supporting HATEOAS
	21.1 What is HATEOAS and Why is it so Important?
	21.1.1 Typical Response with HATEOAS Implemented
	21.1.2 What is a Link?
	21.1.3 Pros/Cons of Implementing HATEOAS

	21.2 Adding Links in the Project
	21.3 Additional Project Changes
	21.4 Adding Custom Media Types
	21.4.1 Registering Custom Media Types
	21.4.2 Implementing a Media Type Validation Filter

	21.5 Implementing HATEOAS

	22 Working with OPTIONS and HEAD Requests
	22.1 OPTIONS HTTP Request
	22.2 OPTIONS Implementation
	22.3 Head HTTP Request
	22.4 HEAD Implementation

	23 Root Document
	23.1 Root Document Implementation

	24 Versioning APIs
	24.1 Required Package Installation and Configuration
	24.2 Versioning Examples
	24.2.1 Using Query String
	24.2.2 Using URL Versioning
	24.2.3 HTTP Header Versioning
	24.2.4 Deprecating Versions
	24.2.5 Using Conventions

	25 Caching
	25.1 About Caching
	25.1.1 Cache Types
	25.1.2 Response Cache Attribute

	25.2 Adding Cache Headers
	25.3 Adding Cache-Store
	25.4 Expiration Model
	25.5 Validation Model
	25.6 Supporting Validation
	25.6.1 Configuration

	25.7 Using ETag and Validation

	26 Rate Limiting and Throttling
	26.1 Implementing Rate Limiting

	27 JWT and Identity
	27.1 Implementing Identity in ASP.NET Core Project
	27.2 Creating Tables and Inserting Roles
	27.3 User Creation
	27.4 Big Picture
	27.5 About JWT
	27.6 JWT Configuration
	27.7 Protecting Endpoints
	27.8 Implementing Authentication
	27.9 Role-Based Authorization

	28 Documenting API with Swagger
	28.1 About Swagger
	28.2 Swagger Integration Into Our Project
	28.3 Adding Authorization Support
	28.4 Extending Swagger Configuration

	29 Deployment to IIS
	29.1 Creating Publish Files
	29.2 Windows Server Hosting Bundle
	29.3 Installing IIS
	29.4 Configuring Environment File
	29.5 Testing Deployed Application

